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1. Introduction 

 A nonlinear hyperelastic elastic material has one of the simplest constitutive 

equations because the stress response is determined algebraically by derivatives of a 

strain energy function.  However, the nonlinear partial differential equations which 

describe the deformation of an elastic material are intractable analytically for most 

problems.  Therefore, numerical methods are essential to obtain solutions of realistic 

problems. 

 Examination of the commercial programs ABAQUS, ADINA, ANSYS and the 

academic code FEAP reveals that the user has to choose from a list of different 

hyperlastic elements (see Table 1.1).  This list includes element formulations based on 

full integration (Q1), full integration of distortion and reduced integration of volume 

(Q1P0), reduced integration with various types of hourglass controls, hybrid methods, 

incompatible modes and enhanced strains.  The reason for this extensive list is that no 

single element performs well for all element geometries, levels of compressibility and 

under all loading conditions.  In particular, it is well known that, within the context of the 

Bubnov-Galerkin approach based on a tri-linear approximation of the displacement field, 

full integration of the constitutive equations leads to an element response which exhibits 

locking for bending dominated response of thin structures (shells and rods) with poor 

element aspect ratios and for nearly incompressible materials.  Two main modifications 

of the element formulations have been proposed to overcome these problems.  One 

modification uses reduced integration with hourglass control (e.g. Belytschko et al., 

1984; Hutter et al., 2000; Reese  and Wriggers, 1996; Reese et al., 2000) and the second 

modification uses enhanced strains or incompatible modes (e.g. Simo and Armero, 1992; 
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Simo and Rifai, 1990; Simo et al., 1993).  Moreover, the enhanced strain and 

incompatible mode elements exhibit hourglass instabilities in regions of high 

compression combined with bending (e.g. Reese  and Wriggers, 1996; Reese et al., 2000; 

Jabareen and Rubin, 2007a,b).  

 
Short 

Name 

Program Element 

Name 

Options 

ABAQUS-1 ABAQUS C3D8(S) 
full integration (

–
B method) 

ABAQUS-2 ABAQUS C3D8R(S) 
reduced integration 

hourglass control: enhanced 

ABAQUS-3 ABAQUS C3D8R(S) 
reduced integration 

hourglass control: stiffness 

ABAQUS-4 ABAQUS C3D8RH(S) 

hybrid formulation 

reduced integration 

hourglass control: enhanced 

ABAQUS-5 ABAQUS C3D8RH(S) 

hybrid formulation 

reduced integration 

hourglass control: stiffness 

ABAQUS-6 ABAQUS C3D8I(S) incompatible modes 

ABAQUS-7 ABAQUS C3D8IH(S) 
hybrid formulation 

incompatible modes 

ADINA-1 ADINA 3D Solid (8 Nodes) full integration 

ADINA-2 ADINA 3D Solid (8 Nodes) incompatible modes 

ANSYS-1 ANSYS Solid185 
pure displacement with  

full integration 

ANSYS-2 ANSYS Solid185 
pure displacement with reduced 

integration and hourglass control 

ANSYS-3 ANSYS Solid185 
pure displacement with enhanced 

strain 

ANSYS-4 ANSYS Solid185 
pure displacement with simplified 

enhanced strain 

ANSYS-5 ANSYS Hyper86 full integration 

ANSYS-6 ANSYS Hyper86 
full integration for shear and 

reduced integration for volume 

FEAP-1 FEAP Solid-Fini-Disp-8 full integration 

FEAP-2 FEAP Solid-Fini-Mixe-8 mixed formulation 

FEAP-3 FEAP Solid-Fini-Enha-8 enhanced strain 

 

Table 1.1  List of elements tested in the programs ABAQUS, ADINA,  

ANSYS and FEAP. 

 Often the person who wants to solve a specific problem using a hyperelastic 

constitutive equations typically does not know which of the element formulations in the 

code is best suited for the specific problem.  Sometimes a problem can be sufficiently 
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complicated that none of these elements can provide accurate predictions for the 

deformation fields in all regions of the problem.  In this sense the existing element 

formulations are not user friendly.  

 Therefore, there appears to be a need for a robust user friendly element formulation 

that can be reliably used for all applications.  The 3-D brick Cosserat Point Element 

(CPE) is a new element technology that is based on the theory of a Cosserat point (Rubin, 

1985a,b; 1995; 2000) and which has been proven  (Nadler and Rubin, 2003; Jabareen and 

Rubin, 2007a,b,c,e) to be such a robust user friendly element for nonlinear elasticity. In 

particular, it does not exhibit unphysical locking or hourglassing for thin structures or 

nearly incompressible material response. 
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2. Basic tensor operations 

 Before developing the equations for a CPE it is useful to review some tensor 

operations.  Basic knowledge of index notation and simple vector operations is assumed 

and more details of tensor operations can be found in (Rubin, 2000).  

Tensor product 

 Let {ai, bi} (i=1,2,3,4) be sets of vectors in three-dimensional space.  Then, the tensor 

product is denoted by the symbol  and the tensor product a1a2 of two vectors is 

defined by its operation on another vector b1, such that 

  (a1a2) b1 = a1 (a2 • b1) =  (a2 • b1) a1  ,  b1 (a1a2) = (b1 • a1) a2  , (2.1) 

where (a2 • b1) denotes the scalar product between the two vectors {a2, b1}.  A scalar is 

called a zero order tensor and a vector is called a first order tensor. The quantity (a1a2) 

is called a second order tensor because it is linear operator which maps the space of 

vectors onto a tensor of one order lower than itself (i.e. a first order tensor).  That is to 

say that the result of (a1a2) operating on a vector is a vector. In general, the result when 

b1 is placed to the right of (a1a2) is different than when it is placed to the left of 

(a1a2).   

 The tensor product can be used to create higher order tensors by creating a string of 

vectors, separated by tensor products.  For example, the quantity (a1a2a3a4) is a 

fourth order tensor which satisfies the conditions 

  (a1a2a3a4) b1 = (a4 • b1) (a1a2a3)  ,  

  b1 (a1a2a3a4) = (b1 • a1) (a2a3a4)  . (2.2) 
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Juxtaposition of two tensors 

 The operation of juxtaposition is used when two tensor are placed next to each other.  

For example 

  (a1a2)(b1b2) = a1(a2 • b1)b2 = (a2 • b1)(a1b2)  , (2.3a) 

  (b1b2)(a1a2) = (b2 • a1) (b1a2) ≠ (a1a2)(b1b2) . (2.3b) 

In particular, note that the operation of juxtaposition is not commutative so that the two 

tensors in (2.3a,b) are not necessarily equal.  Moreover, it is noted that the operation of 

juxtaposition involves the scalar product of only one vector from each of the tensors.  It 

will be shown later that this operation yields results that are the same as standard 

multiplication of matrices.  

Dot product of two tensors 

 The scalar product or dot product of two vectors is a positive definite operator which 

is defined so that the dot product of a vector with itself is positive as long as the vector is 

nonzero.  The dot product of two tensors is also defined as a positive definite operator.  

Specifically, it is defined so that 

  (a1a2) • (b1b2) = (a1 • b1)(a2 • b2) = (b1b2) • (a1a2)  ,  

  (a1a2a3a4) • (b1b2) = (a3 • b1)(a4 • b2) (a1a2)  ,  

 (b1b2) • (a1a2a3a4) = (b1 • a1)(b2 • a2)(a3a4) ≠ (a1a2a3a4) • (b1b2) , 

  (a1a2a3a4) • (b1b2b3b4) = (a1 • b1)(a2 • b2)(a3 • b3)(a4 • b4)  . (2.4) 

In particular, note that the dot product of two tensors has the order of the difference of the 

orders of the tensors (e.g. the dot product of two tensors of the same order is a scalar and 
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the dot product of a tensor of fourth order with a tensor of second order is a tensor of 

second order). 

Transpose of a tensor 

 The transpose of a tensor is obtained by interchanging the order of the vectors 

associated with the order of the transpose operator.  For example, the right transpose 

(denoted by a superposed T) and the left transpose (denoted by a superposed LT) are 

defined so that 

  (a1a2)T = (a2a1)  ,  RT(a1a2) = (a2a1)  , 

  (a1a2a3a4)T = (a1a2)(a4a2) ,  RT(a1a2a3a4) = (a2a1)(a3a4) . (2.5) 

Notice that the operators T and RT change the order of the two vectors closest to the 

operator.   

 It is also possible to define higher order transpose operations like T(2) and RT(2) 

which apply to pairs of two vectors, such that 

  (a1a2a3a4)T(2) = (a3a4)(a1a2) = RT(2)(a1a2a3a4)  . (2.6) 

General tensors 

 Although the tensor (a1a2) is a second order tensor it is not a general second order 

tensor.  In order to discuss general tensors it is convenient to first consider tensors 

referred to a rectangular Cartesian triad ei (i=1,2,3) of constant orthonormal vectors  

  ei • ej = ij  , (2.7) 

where ij denotes the Kroneker delta  

  ij = 1  for i=j   and   ij = 0  for i≠j  . (2.8) 
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 It is well known that the vectors ei form a complete set of base vectors that span the 

space of three-dimensional vectors so that an arbitrary vector v can be expressed in terms 

of its components vi relative to ei, such that 

  vi = v • ei  ,  v = vi ei  , (2.9) 

where the usual summation convention is used over repeated indices, which take the 

values (i=1,2,3). In a similar manner it is possible to define a set of nine orthonormal base 

tensors (eiej) that span the space of second order tensors with 

  (eiej) • (emen) = im jn  . (2.10) 

Then, an arbitrary second order tensor T can be expressed in terms of its components Tij 

relative to ei, such that 

  Tij = T • (eiej) ,    T = Tij (eiej) . (2.11) 

Also, an arbitrary fourth order tensor T can be expressed in terms of its components Tijmn 

relative to ei, such that 

  Tijmn = T • (eiejemen) ,    T = Tijmn (eiejemen) . (2.12) 

In particular, it is noted that a general second order tensor has 32=9 independent 

components and a general fourth order tensor has 34=81 independent components. 

Representation of tensors with respect to curvilinear coordinates 

 Within the context of the CPE theory it is convenient to express some tensors using 

the same symbol as is typically used in the three-dimensional theory. Thus, in order to 

distinguish between these quantities a superposed (*) is used for the three-dimensional 

quantity.  For example, the position vector of a material point in the deformed present 

configuration associated with the three-dimensional theory is denoted by x* instead of x.  
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The rectangular Cartesian base vectors ei are special in that they are constants which are 

independent of the coordinates x i
*.  Consequently, the position vector x* can be expressed 

in the form 

  x* = x i
* ei  ,   (2.13) 

so that the base vectors ei can be determined by the equations 

  ei = 
∂x*

∂x i
*  . (2.14) 

 For general curvilinear coordinates the position vector x* is a function of three 

convected coordinates i (i=1,2,3) and time t, such that 

  x* = x*(i,t)  . (2.15) 

The convected coordinates i have constant values for a specified material point and the 

need for distinguishing between subscripts and superscripts will become apparent. The 

covariant base vectors gi defined by  

  gi = x*,i = 
∂x*

∂i   , (2.16) 

are generalizations of the base vectors ei in (2.14).  Here, and throughout the text, a 

comma is used to denote partial differentiation with respect to the coordinates i.  Also, it 

is noted that the mapping (2.15) is limited so that it is one-to-one with gi being linearly 

independent vectors  

  g1/2 = g1g2 • g3 > 0  , (2.17) 

that span the three-dimensional space.  The main difference between gi and ei is that gi 

can depend on the coordinates i. This has an important influence on expressions related 
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to the gradient and divergence operators. Moreover, since i do not necessarily have the 

units of length (i.e. the angle in cylindrical polar coordinates), gi  need not be unitless. 

 Since gi are linearly independent it is possible to define reciprocal vectors gi (also 

called contravariant base vectors) by the expressions 

  g1 = g–1/2 g2g3  ,  g2 = g–1/2 g3g1 ,  g3 = g–1/2 g1g2  , (2.18) 

such that 

  gi • gj = i
j  , (2.19) 

where  i
j is the Kroneckor delta symbol.  Now, an arbitrary vector v can be expressed in 

terms of its covariant components vi or its contravariant components vi 

  vi = v • gi  ,  v
i = v • gi  ,  v = vi g

i = vi gi  . (2.20) 

Similarly, an arbitrary second order tensor T can be expressed in terms of its covariant 

components Tij, its contravariant components Tij, or its mixed components {Ti
j, Ti

j}  

  Tij = T • (g igj)  ,   T
ij = T • (gigj)  ,  Ti

j = T • (gigj)  ,  Ti
j = T • (gigj)  , 

  T = Tij (g
igj) = Tij (gigj) = Ti

j (gigj) = Ti
j (gigj)  . (2.21) 

In particular, notice that the summation connects covariant components with 

contravariant base vectors or contravariant components with covariant base vectors.  

Furthermore, it can be shown that the unit second order tensor I can be expressed in the 

forms 

  I = gigi = gigi  . (2.22) 
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Referential description 

 In continuum mechanics it is sometimes convenient to introduce a stress-free 

reference configuration.  Specifically, the material point in the reference configuration 

that is associated with the position x* in the present configuration is denoted by X* 

  X* = X*(i)  , (2.23) 

and is independent of time t.  It then follows that the associated covariant base vectors Gi, 

and contravariant base vectors Gi are defined by expressions similar to (2.16)-(2.19) 

  Gi = X*,i   ,  G
1/2 = G1G2 • G3  ,  Gi • Gj = i

j  , 

  G1 = G–1/2 G2G3  ,  G2 = G–1/2 G3G1 ,  G3 = G–1/2 G1G2  . (2.24) 

Also, the unit tensor I can be written in the alternative forms 

  I = GiGi = GiGi  . (2.25) 

Gradient operator 

 The gradient of a tensor T relative to the reference position X* is denoted by Grad*T  

and the gradient of T relative to the present position x* is denoted by grad*T, which are 

defined by 

  Grad*T = ∂T/∂X* = T,iGi  ,  grad*T = ∂T/∂x* = T,igi  . (2.26) 

Divergence operator 

 The divergence of a tensor T relative to the reference position X* is denoted by 

Div*T  and the divergence of T relative to the present position x* is denoted by div*T, 

which are defined by 

  Div*T = T,i • G
i  ,  div*T = T,i • g

i  . (2.27) 
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 The divergence operators can be simplified by differentiating (2.17), (2.18) and (2.24) 

to prove the identity 

  (G1/2 Gi),i = 0  , (g1/2 gi),i = 0  , (2.28) 

Then, Div*T and div*T can be expressed in the alternative forms 

  Div*T = G–1/2 (G1/2 T Gi),i  ,  div*T = g–1/2 (g1/2 T gi),i  . (2.29) 

This form is simpler than (2.27) because the derivative of T includes derivatives of the 

components of T as well as derivatives of each of the base vectors.  For example, if T is a 

second order tensor then 

  T,i = [Tmn (gmgn)],i  = Tmn,i (g
mgn) + Tmn (gm,ign) + Tmn (gmgn,i) , (2.30) 

whereas, the expressions in (2.29) is based on derivatives of vectors. 
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3. Some kinematic measures in continuum mechanics 

 In continuum mechanics the material point X* in the fixed reference configuration it 

mapped to the location x* in the deformed present configuration by the expression (2.15). 

The absolute velocity v* of the material point is obtained by 

  v* = 
•
x* = 

∂x*(i,t)

∂t
  , (3.1) 

where the material time derivative is denoted by a superposed dot (•) which indicates 

partial differentiation with respect to time t holding the convected coordinates i 

constants. 

 The deformation gradient F* is a two-point tensor that maps material line element 

dX* in the reference configuration to material line elements dx* in the present 

configuration 

  dx* = F*dX*  ,   F* = ∂x*/∂X* = Grad*x*  . (3.2) 

Using the results in Section 2 it can be shown that F* can be expressed in terms of the 

base vectors by 

  F* = giGi  . (3.3) 

Moreover, the dilatation J* 

  J* = det(F*) = 
g1/2

G1/2 = 
dv*

dV*  , (3.4) 

is a pure measure of volume change since the element of volume dV* in the reference 

configuration and the element of volume dv* in the present configuration are given by 

  dV* = G1/2d1d2d3  ,  dv* = g1/2d1d2d3  . (3.5) 
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 Next, taking the material derivative of F* and using the fact that Gi are independent 

of time it can be shown that 

  
•
F* = 

•
giGi = v*,iGi = L*giGi = L*F*  , (3.6) 

where L* is the velocity gradient 

  L* = ∂v*/∂x* = v*,jgj  . (3.7) 

The velocity gradient L* separates into its symmetric part D*, called the rate of 

deformation tensor and its skew-symmetric part W*, called the spin tensor, such that 

  L* = D* + W*  ,  D* = 
1

2
 (L*+L*T) = D*T  ,  W* = 

1

2
 (L*–L*T) = – W*T  . (3.8) 

Moreover, it can be shown that the material derivative of the dilatation J* is given by 

  
•
J* = J* D* • I  .  (3.9) 
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4. Balance laws in curvilinear coordinates 

 Let P denote the current material region of space occupied by a body and let ∂P be its 

smooth closed boundary. Also, let P0 be the material region occupied by the same body 

in its fixed reference configuration with ∂P0 being its smooth closed boundary.  Then, the 

balance laws of the purely mechanical theory can be expressed as the conservation of 

mass 

  
P

 * dv* = 
P0

 0
* dV*  , (4.1) 

the balance of linear momentum 

  
d

dt
 

P
  *v* dv* = 

P
 *b* dv* + 

∂P
  t* da*  , (4.2) 

and the balance of angular momentum about the fixed origin 

  
d

dt
 

P
 x**v* dv* = 

P
 x **b* dv* + 

∂P
 x* t* da*  . (4.3) 

 In these expressions, * is the current mass density, 0
* is its reference value, b* is the 

body force per unit mass, t* is the surface traction and da* is the element of area in the 

present configuration.  Also, it is recalled that the traction vector is related to the Cauchy 

stress tensor T* and the unit outward normal vector n* to ∂P* by the expression 

  t* = T* n*  . (4.4) 

Next, using (3.5) and the divergence theorem in the form 

  
P

 div*A dv* = 
∂P

 A n* da*  , (4.5) 

the local forms of the conservation of mass and the balance of linear momentum become 

  m* = *g1/2 = 0
* G1/2 = m*(i)  ,   m*•

v* = m*b* + t*j,j  , (4.6a,b) 
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where use has been made of (2.28) and the three vectors t*i are defined by 

  t*i = g1/2T*gi  . (4.7)  

Also, using the balance laws (4.6) the reduced form of the balance of angular momentum 

requires the Cauchy stress tensor to be symmetric 

  T*T = T*  . (4.8) 

 Within the context of the purely mechanical theory it is convenient to define the rate 

of work W done on the body, the kinetic energy K and the strain energy U of the body by 

the expressions 

  W = 
P

 *b* • v* dv* + 
∂P

 t* • v* da* , 

  K = 
P

 
1

2
 *b* • v* dv*  ,  U =  

P
 ** dv*  , (4.9) 

where * is the strain energy function per unit mass.  Then, the rate of material 

dissipation D* per unit present volume can be defined by 

  
P

 D* dv* = W – 
•
K – 

•
U ≥ 0  , (4.10) 

and is required to be non-negative. Next, using the balance laws (4.6) and (4.8) it can be 

shown that 

  D* = T* • D* – * •
* ≥ 0  .  (4.11) 

For a nonlinear elastic solid the strain energy depends on the deformation gradient F* 

through the deformation tensor C* 

  * = *(C*)  ,  C* = F*F*T  , (4.12) 
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the stress T* is assumed to be independent of deformation rate and the rate of dissipation 

D* vanishes.  These assumptions lead to the result that the stress is given by the 

hyperelastic constitutive equation 

  T* = 2*F* ∂
*

∂C* F*T  . (4.13) 

 Using the work of Flory (1961) it is possible to separate the effects of dilation from 

distortion.  Specifically, the dilation J* defined by 

  J* = det(F*)  , (4.14) 

is a pure measure of volume change and the symmetric, unimodular tensor B*' defined by 

  B*' = J*–2/3 B*  ,  B* = F*F*T  ,  det(B*') = 1 , (4.15) 

is a pure measure of distortional deformation.  It therefore, follows that B*' has only two 

nontrivial invariants, which can be defined by 

  1
* = B*' • I  ,   2

* = B*' • B*'  . (4.16) 

Thus, for an elastically isotropic material the strain energy function * can be expressed 

in the form 

  * = *(J*, 1
*, 2

*)  . (4.17) 

Moreover, in the examples considered here, attention is focused on the special case of a 

compressible Neo-Hookean material defined by 

  0
* * = 

1

2
 K (J*–1)2 + 

1

2
 (1

* – 3)  , (4.18) 

where {K, } are the small deformation bulk and shear modulus, respectively, and 

Poisson's ratio  is defined such that 
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  K = 
2(1+)

3(1–2)
  . (4.19) 

 Unless otherwise stated, for the example problems considered in the later sections the 

material is taken to be compressible with the strain energy function (4.18) and with the 

material constants specified by 

  K = 1 GPa  ,   = 0.6 GPa ,   = 0.25  . (4.20) 

For the special examples which consider a nearly incompressible the material constants 

are specified by 

  K = 1000 GPa  ,   = 0.6 GPa ,    0.4997  . (4.21) 
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5. Bubnov-Galerkin equations for a 3-D brick element 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Sketch of a general brick CPE showing the numbering of the nodes and the 

surfaces. 

 Figure 5.1 shows a sketch of a 3-D brick element which occupies the region P with 

closed boundary ∂P characterized by the union of the six surfaces ∂PI (I=1,2,…,6).  

Within the context of the Bubnov-Galerkin approach based on tri-linear shape functions, 

the position vector X* of a material point in the reference configuration is represented by 

  X* = X*(i) = 
m=0

7

  Nm(i) Dm  , (5.1) 

where the shape functions Nm(i) depend only on the convected coordinates i and are 

given by 

  N0 = 1 , N1 = 1 , N2 = 2 , N3 = 3 ,  

  N4 = 12 , N5 = 13 , N6 = 23 , N7 = 123 , (5.2) 
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and the reference element director vectors Di (i=0,1,…,7) are constant vectors with Di 

(i=1,2,3) being linearly independent 

  D1/2 = D1D2 • D3 > 0  . (5.3) 

The locations of the nodes in the reference configuration are characterized by the 

constant reference nodal director vectors 
–
Di (i=0,1,…,7).  In particular, the convected 

coordinates are limited by the lengths Hi (i=1,2,3), such that 

  |1| ≤ 
H1

2
  ,  |2| ≤ 

H2

2
  , |3| ≤ 

H3

2
  , (5.4) 

and that 

  
–
D0 = X*(– 

H1

2
, – 

H2

2
, –  

H3

2
)  ,   

–
D1 = X*(

H1

2
, – 

H2

2
, –  

H3

2
)  ,  

  
–
D2 = X*(

H1

2
,  

H2

2
, –  

H3

2
)  ,  

–
D3 = X*(– 

H1

2
,  

H2

2
, –  

H3

2
)  , 

  
–
D4 = X*(– 

H1

2
, – 

H2

2
,  

H3

2
)  ,  

–
D5 = X*( 

H1

2
, – 

H2

2
, 
H3

2
)  , 

  
–
D6 = X*(

H1

2
,  

H2

2
,  

H3

2
)  ,  

–
D7 = X*(– 

H1

2
,  

H2

2
,  

H3

2
)  . (5.5) 

Also, the lengths Hi are defined so that Di (i=1,2,3) are unit vectors 

  |D1| = |D2| = |D3| = 1  . (5.6) 

 In the Bubnov-Galerkin approach it is also assumed that the position vector x* of 

material points in the present configuration can be expressed using a representation of the 

form (5.1) with the reference element directors Di replaced by the present element 

directors di(t), which are functions of time t only, such that 
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  x* = x*(i,t) =  
m=0

7

  Nm(i) dm(t)  , (5.7) 

where it is assumed that di (i=1,2,3) are linearly independent vectors  

  d1/2 = d1d2 • d3 > 0  . (5.8) 

In this regard, it should be noted that although the representation (5.1) is exact the 

expression (5.7) is an approximation of the deformation field in the element. 

 Now, the element directors can be expressed as functions of the nodal directors using 

a constant matrix Aij (i,j=0,1,…,7) that is determined by (5.1) and (5.5) 

  Di = 
i=0

7

  Aij 
–
Dj  ,   di = 

i=0

7

  Aij 
–
dj  . (5.9) 

In this expression 
–
di(t) (i=0,1,..,7) are the nodal director vectors that locate the present 

positions of the nodes of the element. Moreover, the element director velocities wi and 

nodal director velocities 
–
wi are defined by 

  wi = 
•
di  ,    

–
wi = 

–•
di  (i=0,1,…,7)  . (5.10) 

 The objective of the Bubnov-Galerkin approach is to develop weak forms of 

equations for the director vectors di which represent an approximation of the partial 

differential equation (4.6b) expressing the balance of linear momentum.  To this end, 

multiply (4.6b) by the weighting function (i) to deduce that 

   m*•
v* =   m*b* + 

j=1

3

  [( t*j),j  – t*j ,j]  . (5.11) 

Then, integrate this result over the region P to obtain the weak form 
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d

dt
 

P
  *v* dv* = 

P
  *b* dv*  +  

∂P
  t* da* –  

j=1

3

 
P

 g–1/2 t*j ,j dv* , (5.12) 

where use has been made of the conservation of mass (4.6a) and the divergence theorem 

(4.5). 

 Next, it is convenient to introduce a number of quantities that are used in the CPE 

formulation.  Specifically, the mass m of the element and the director inertia quantities yij 

are given by 

  m = 
P

 *dv*  ,  myij = 
P

 NiNj *dv* = yji  (i,j=0,1,…,7)  ,  y00 = 1  , (5.13) 

the external assigned director couples bi  due to body forces and the director couples mi 

due to surface tractions on the boundaries of the CPE are given by 

  mbi = 
P

 Ni *b* dv*  ,  mi = 
∂P

 Ni t* da*  (i=0,1,…,7)  . (5.14) 

Also, the intrinsic director couples ti are expressed by 

  ti = 
j=1

3

  
P

 g–1/2 t*j Ni,j dv*   (i=0,1,…,7)  . (5.15) 

Then, using these definitions, the global balance laws (4.1)-(4.3), the representation (5.7) 

and taking  in (5.12) equal to Ni it is possible to derive the balance laws of the CPE.  

Specifically, the conservation of mass  

  
•
m = 0  , (5.16) 

the balances of director momentum  

  
d

dt
 (

j=0

7

 myij wj) = mbi + mi – ti   with  (t0 = 0)    (i=0,1,…,7)  , (5.17) 
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and the balance of angular momentum 

  
d

dt
 (

i=0

7

  
j=0

7

 dimyij wj) = 
i=0

7

 dimbi + 
i=0

7

 dimi    (i=0,1,…,7)  , (5.18) 

represent the balance laws of the CPE. In particular, it is noted that balances of director 

momentum (5.17) include the global form (4.2) of the balance of linear momentum for 

i=0.  Also, it can be shown that the director inertia coefficients yij are constants 

  
•
yij = 0  . (5.19) 

Furthermore, using the representation (5.7) the rate of work W and kinetic energy K in 

(4.9) can be expressed in the forms 

  W = Wb + Wc  , Wb = 
i=0

7

 mbi • wi , Wc = 
i=0

7

 mi • wi  ,   

  K = 
i=0

7

  
j=0

7

  
1

2
 m yij wi • wj , (5.20) 

where {Wb, Wc} represent the rates of work done by body forces and surface tractions, 

respectively. 

 The main difference between the Bubnov-Galerkin approach and the CPE approach is 

the procedure for determining constitutive equations for the intrinsic director couples ti.  

This will be discussed in detail in the following sections. 
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6. Balance laws for a 3-D brick CPE (direct approach) 

 The nodes of the 3-D brick CPE shown in Fig. 5.1 are characterized by the constant 

reference nodal directors 
–
Di (i=0,1,…,7) and by the present nodal director vectors 

–
di(t) 

(i=0,1,…,7) which are functions of time.  Then, the reference element directors Di and 

present element directors di(t) are determined by the expressions (5.9) where Aij is a 

constant matrix.  Moreover, the element director velocities wi and nodal director 

velocities 
–
wi are given by (5.10). 

 In view of the restrictions (5.3) and (5.8) it is possible to define reciprocal vectors Di 

and di (i=1,2,3) by formulas of the type (2.18) and (2.24) so that 

  Di • D
j = i

j  ,  di • d
j = i

j  ,  (i,j=1,2,3)  . (6.1) 

Then, the kinematics of the CPE can be characterized by the deformation tensor F and its 

determinant J 

  F = F(t) = 
i=1

3

 diDi  ,   J = det(F) = 
d1/2

D1/2  > 0  , (6.2) 

associated with homogeneous deformations and the vectors i 

  i = F–1di+3 – Di+3  ,  di+3 = F(Di+3 + i)   (i=1,2,3,4)  , (6.3) 

associated with inhomogeneous deformations. Furthermore, the rate of deformation 

tensor L and its symmetric part D are defined by 

  L = 
•
FF–1 = 

i=1

3

 widi  ,   D = 
1

2
 (L + LT) = DT  , (6.4) 

so that 
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    wi = Ldi  (i=1,2,3)  ,  wi+3 = Ldi+3 + F 
•
i  ,  

•
i = F–1(wi+3 – Ldi+3)  (i=1,2,3,4) . (6.5) 

 Within the context of the direct approach, the balance laws of the CPE are proposed 

as the conservation of mass (5.16), the balances of director momentum (5.17) and the 

balance of angular momentum (5.18).  Also, the director inertia coefficients yij are 

constants (5.19) and the expressions for the rate of work W done on the CPE and its 

kinetic energy K are given by (2.20).  Moreover, the rate of material dissipation D is 

proposed by an equation like (4.10), such that 

  d1/2D = W – 
•
K – m

•
 ≥ 0  , (6.6) 

where  is the strain energy function per unit mass m of the CPE. 

 Using the symmetry of the director inertia coefficients yij, the balances of director 

momentum (5.17) and introducing the tensor 

  d1/2T = 
i=1

7

  tidi  , (6.7) 

it can be shown that the reduced form of the balance of angular momentum (5.18) 

requires T to be a symmetric tensor 

   TT = T  , (6.8) 

which is similar to the restriction (4.8) associated with the three-dimensional theory. 

 Moreover, using the balances of director momentum (5.17), the rate of material 

dissipation can be expressed in the form 

  d1/2D = 
i=1

7

  ti • wi – m
•
 ≥ 0  . (6.9) 

However, with the help of (6.5) the mechanical power can be rewritten in the form 
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  
i=1

7

  ti • wi = d1/2T • D + 
i=1

4

  FTt(i+3) • 
•
i  , (6.10) 

so the rate of material dissipation reduces to 

  d1/2D = d1/2T • D + 
i=1

4

  FTt(i+3) • 
•
i – m

•
 ≥ 0  . (6.11) 

 Now, comparison of (6.11) with the three-dimensional equation (4.11) suggests that 

d1/2T is similar to the Cauchy stress.  In fact, using the approximation (5.7) it follows that 

  gj = 
i=1

7

  Ni,j di . (6.12) 

Thus, with the help of (2.22), (4.7), (5.15) and (6.7) it can be shown that d1/2T is related 

to the volume integral of Cauchy stress T* 

  d1/2T = 
i=1

7

   
j=1

3

  
P

 g–1/2 t*j Ni,j dv*di = 
P

 T* (
j=1

3

 gjgj) dv* , 

  d1/2T =  
P

 T* dv*  . (6.13) 

Consequently, the volume averaged Cauchy stress Tav
*

g is given by 

  Tav
*

g = 
1

v* d1/2T  ,   (6.14) 

where with the help of (2.17), (3.5) and (5.7) the current volume of the element is given 

by 

    v* = 
P

 dv* = H1H2H3 [d1/2+ 
H1

2

12
 d4d5 • d1+ 

H2
2

12
 d6d4 • d2+ 

H3
2

12
 d5d6 • d3]  . (6.15) 
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7. Constitutive equations for a hyperelastic CPE 

 The strain energy function * in (4.12) for a hyperelastic material is local in the sense 

that it characterizes the response of the material at a material point.  In contrast, the 3-D 

brick CPE is a structure whose response depends on both the material and geometric 

properties and the structure.  Consequently, the constitutive equations for the CPE 

necessarily combine material and geometric quantities. 

 A hyperelastic CPE is an ideal element in the same sense that a hyperelastic material 

is an ideal material.  In particular, for a hyperelastic CPE it is assumed that the strain 

energy function  depends tacitly on the reference geometry of the CPE and explicitly on 

the  deformations measures {C, i} 

   = (C,i) . (7.1) 

Furthermore, the kinetic quantities {T, ti} are assumed to be independent of deformation 

rates and the rate of dissipation D in (6.11) is assumed to vanish for all processes 

  d1/2D = d1/2T • D + 
i=1

4

  FTt(i+3) • 
•
i – m

•
 = 0  . (7.2) 

Then, using the usual arguments it can be shown that the kinetic quantities are 

determined by derivatives of  

  d1/2T = 2mF 
∂

∂C
 FT  ,  t(i+3) = mF–T∂

∂i
  (i=1,2,3,4)  ,   (7.3) 

with the remaining ti (i=0,1,2,3) being determined by (5.17) and (6.7) 

  t0 = 0  ,   ti = [d1/2T – 
j=4

7

 tjdj] • d
i     (i=1,2,3)  . (7.4) 
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8. A nonlinear patch test 

 Following previous research on shells (Naghdi and Rubin, 1995), rods (Rubin, 1996) 

and points (Rubin, 2000, 2001; Nadler and Rubin, 2003) it is possible to impose 

restrictions on the strain energy function  which ensure that the CPE produces solutions 

that are consistent with the exact three-dimensional theory for all homogeneous 

deformations of an arbitrary uniform homogeneous anisotropic elastic materials.  These 

restrictions are equivalent to a nonlinear patch test on the brick element.  Specifically, 

confining attention to such a material it can be shown that the mass m is given by 

  m = 0
* V* , (8.1) 

where the volume V* of the CPE in its reference configuration is determined by using the 

representation (5.1) to deduce that 

  V* = D1/2V = 
P0

 dV* , 

  V*= H1H2H3[D1/2+ 
H1

2

12
 D4D5 • D1+ 

H2
2

12
 D6D4 • D2+ 

H3
2

12
 D5D6 • D3]   , (8.2) 

and the quantity V has been introduced for convenience.   

 Now, using (3.3) and the kinematic assumption (5.7) it can be shown that 

  F* = 
m=0

3

  [FDi + 
i=1

4

  N(i+3),m F(Di+3 + i)]Gm  , 

  F* = F 
m=0

3

  [GmGm + 
i=1

4

  N(i+3),m iGm]  , 

  F* = F[I + 
i=1

4

   
m=0

3

  N(i+3),m iGm]  . (8.3) 
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Thus, the deformation will be three-dimensionally homogeneous with F* being 

independent of the coordinates i if i vanish 

  F* = F(t)  for  i = 0  (i=1,2,3,4)   . (8.4) 

This result demonstrates that i are measures of inhomogeneous deformation.  Moreover, 

Nadler and Rubin (2003) introduced the auxiliary deformation measure 
–
F 

  
–
F = F(I + 

i=1

4

  iVi)  , (8.5) 

where the vectors Vi are defined by the reference geometry of the CPE such that 

  D1/2 VVi = 
m=1

3

  
P0

 [N(i+3),m Gm] dV* ,   (i=1,2,3,4)  . (8.6) 

Consequently, with the help of (5.1), Vi  are given by  

  D1/2VV1 = H1H2H3 [
H1

2

12
 D5D1 + 

H2
2

12
 D2D6]  , 

  D1/2VV2 = H1H2H3 [
H1

2

12
 D1D4 + 

H3
2

12
 D6D3]  , 

  D1/2VV3 = H1H2H3 [
H2

2

12
 D4D2 + 

H3
2

12
 D3D5]  ,   D

1/2VV4 = 0  . (8.7) 

Also, integration of (8.3) over the region P0 yields the result that 
–
F is the volume 

averaged three-dimensional deformation gradient (Loehnert et al., 2005) 

  
–
F = 

P0
 F* dV*  . (8.8) 
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 Furthermore, for homogeneous deformations (8.4) of a hyperelastic material the 

Cauchy stress T* is also independent of the coordinates.  Consequently, with the help of 

(3.4), (4.6a), (4.13), (6.15), (8.1) and (8.2) it can be shown that for homogeneous 

deformations (6.13) requires 

  d1/2T = v* T* = D1/2V J* T* = 2m F* ∂
*

∂C* F*T =  2m F ∂
*(C)

∂C
 FT . (8.9) 

Also, for homogeneous deformations (5.15) yields 

  t(i+3) = 
m=1

3

  
P

 T*gm N(i+3),m dv* =  J T*F–T 
P0

 
m=1

3

  N(i+3),m G
m

 dV* , 

  t(i+3) = D1/2V J T*F–T Vi = d1/2T F–TVi  (i=1,2,3,4) . (8.10) 

Now, comparison of the results (8.9) and (8.10) with the constitutive equations (7.3) 

indicates that the CPE will satisfy the patch test provided that the strain energy function 

satisfies the restrictions that 

  
∂

∂C
 = 

∂*(C)

∂C
 ,   

∂

∂i
  = 2 C ∂

*(C)

∂C
 Vi  (i=1,2,3,4)  for i = 0  . (8.11) 

Motivated by the work in (Nadler and Rubin, 2003) these restrictions can be simplified 

by writing the general form of the strain energy of the CPE as 

  (C,i) = *(
–
C) + (

–
C,i)       (i=1,2,3,4)  , (8.12) 

where here  is taken to be a function of {
–
C,i} instead of {C,i} as in (Nadler and 

Rubin, 2003).  Next, taking the material derivative of (8.5) yields the results that 

  
–•
F = L

–
F + F (

i=1

4

  
•
iVi) , 
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–•
C = 

–
FTF–T •

CF–1–
F + 

–
FTF (

i=1

4

  
•
iVi) + (

i=1

4

 Vi
•
i) F

T –F  , (8.13) 

so that using the chain rule of differentiation it can be shown that 

  
∂

∂C
 = F–1–

F [
∂*(

–
C)

∂
–
C

 + 
∂

∂
–
C

] 
–
FTF–T  , 

  
∂

∂i
 = 

∂

∂i
 + 2 FT–

F  [
∂*(

–
C)

∂
–
C

 + 
∂

∂
–
C

] Vi  (i=1,2,3,4)  . (8.14) 

Thus, with the help of the representation (8.12) the restrictions (8.11) reduce to 

restrictions on only the inhomogeneous part  of the strain energy 

  
∂(

–
C,i)

∂
–
C

  = 0  ,  
∂(

–
C,i)

∂m
  = 0   for i = 0   (i,m=1,2,3,4)  . (8.15)  

For general anisotropic materials it is not known how to propose a functional form for  

which includes dependence on the reference geometry that causes the CPE to produce 

accurate results for general irregular shaped elements experiencing bending dominated 

loads.  However, progress made for isotropic materials will be discussed in the next 

sections. 

  



32 

9. A specific form of the strain energy function for inhomogeneous deformations 

 Using the definitions of the inhomogeneous strain measures j
i in (Nadler and Rubin, 

2003; Jabareen  and Rubin, 2007e) 

  1
1 = H2 1 • D1  ,  1

2 = H1 1 • D2  ,  1
3 = H3 1 • D3  ,   

  2
1 = H3 2 • D1  ,  2

2 = H2 2 • D2  ,   2
3 = H1 2 • D3  , 

  3
1 = H1 3 • D1  ,  3

2 = H3 3 • D2  ,   3
3 = H2 3 • D3  , 

  4
1 =  H2H3 4 • D1  ,  4

2 = H1H3 4 • D2  ,   4
3 = H1H2 4 • D3  , (9.1) 

and the alternative variables bi (i=1,2,…,12) defined by 

  bi = {1
1, 3

3, 1
2, 2

3, 2
1, 3

2, 1
3, 2

2, 3
1, 4

1, 4
2, 4

1}  , (9.2) 

it is convenient to replace the dependence of  on j (j=1,2,3,4) with dependence on bj  

and express the strain energy function in the form 

  (C,j) = *(
–
C) + (

–
C,bi)       (i=1,2,…,12)  . (9.3) 

Then, the constitutive equations for a hyperelastic CPE become 

  d1/2T = 2m 
–
F [

∂*(
–
C)

∂
–
C

 + 
∂

∂
–
C

] 
–
FT , 

  t4 = [m 
∂

∂b1
 H2d1 + m 

∂

∂b3
 H1d2 + m 

∂

∂b7
 H3d3] + (d1/2T)(

–
F–T V1) , 

  t5 = [m 
∂

∂b5
 H3d1 + m 

∂

∂b8
 H2d2 + m 

∂

∂b4
 H1d3] + (d1/2T)(

–
F–T V2) , 

  t6 = [m 
∂

∂b9
 H1d1 + m 

∂

∂b6
 H3d2 + m 

∂

∂b2
 H2d3] + (d1/2T)(

–
F–T V3) , 
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  t7 = [m 
∂(

–
C,i

j)

∂1
4

 H2H3d1 + m 
∂(

–
C,i

j)

∂2
4

 H1H3d2 + m 
∂(

–
C,i

j)

∂3
4

 H1H2d3] , (9.4) 

with the remaining expressions for ti (i=0,1,2,3) are given by (7.4).  Moreover, the 

special case considered in (Jabareen  and Rubin, 2007e) takes  to be a quadratic 

function of bi which is independent of 
–
C, such that 

  2m = 
D1/2V

6(1–)
 [

i=1

12

  
j=1

12

 Bij bi bj] , (9.5) 

where {, } are the shear modulus and Poisson's ratio associated with the small 

deformation response and Bij is a symmetric matrix.  As a special case, higher-order 

hourglass modes are uncoupled from bending and torsional modes so that (Nadler and 

Rubin, 2003) 

  Bij = 0  for i=10 and j≠10  ,  Bij = 0 for i=11 and j≠11  ,   

  Bij = 0 for i=12 and j≠12   , 

  B(10,10) = 
(–)

24
 [

2(3–)

(3–2)
 + 

H1
2

H2
2  + 

H1
2

H3
2] , B(11,11) = 

(–)

24
 [

2(3–)

(3–2)
 + 

H2
2

H1
2  + 

H2
2

H3
2] , 

  B(12,12) = 
(–)

24
 [

2(3–)

(3–2)
 + 

H3
2

H1
2  + 

H3
2

H2
2] . (9.6)  

The remaining 45 values of Bij need to be determine by matching exact solutions to 

specific problems. 
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10.  Determination of the constitutive coefficients 

 The coefficients Bij of the strain energy  of inhomogeneous deformations (9.5) can 

be determined by matching exact solutions of the linearized theory of an isotropic elastic 

material.  Specifically, these coefficients were determined in (Nadler and Rubin, 2003) 

by matching exact solutions of pure bending and pure torsion of a rectangular 

parallelepiped.  Then, the same functional forms of Bij were used for elements with 

general reference shapes.  In (Loehnert et al., 2005) it was shown that the resulting CPE 

exhibited robust, accurate response to a number of problems which typically exhibit 

unphysical locking or hourglassing in other element formulations.  However, it was also 

shown there that the CPE exhibited undesirable sensitivity to irregularity of the reference 

element shape. 

 Recently, Boerner et al. (2007) have proposed a numerical method for determining 

coefficients in a quadratic form of the strain energy function for inhomogeneous 

deformations of a 2-D plane strain formulation of the CPE.  This numerical approach 

produces improved response for irregular shaped elements. Jabareen and Rubin (2007b) 

developed analytical forms for Bij which cause an improved 3-D brick CPE to yield 

results that are relatively insensitive to element irregularity for a number of problems.  

However, it was observed that the accuracy of this improved CPE for out-of-plane 

bending of a rhombic plate degrades as the angle of plate decreases from 90.  This is 

because the coefficients developed in (Jabareen and Rubin, 2007b) were not based on 

out-of-plane bending solutions.  Later, Jabareen and Rubin (2007e) developed a 

generalized CPE which removed the deficiency in the improved CPE.  Specifically, the 

functional forms for Bij were generalized to include full coupling of bending and 
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torsional modes of deformation.  Also, the generalized CPE was obtained by considering 

out-of-plane bending solutions in addition to in-plane bending solutions. 

 

 

 

 

 

 

 

 

Fig. 10.1  Sketch of the cross-section of the parallelepiped element E1. 

 It was observed in (Jabareen and Rubin, 2007b,e) that in order to develop functional 

forms for Bij which produce a CPE that is relatively insensitive to element irregularity it 

is sufficient to focus attention on the bending and torsion response of elements which are 

parallelepipeds with two right angles.  Specifically, with reference to the base vectors ei 

of a fixed rectangular Cartesian coordinate system it is convenient to introduce the metric 

Dij 

  Dij = Di • Dj  , (10.1) 

and consider the three elements E1-E3 defined by (see Fig. 10.1 for E1) 

Element E1 (D12≠0, D13=0, D23=0) 

  D1 = e1 ,  D2 = D12 e1 + 1–D12
2  e2  ,  D3 = e3  , Di = 0 (i=0,4,5,6,7) , (10.2a) 

  

H2 1–D12
2  

H1 

H2 

D2 

H1 1–D12
2  

D1 
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Element E2 (D12=0, D13≠0, D23=0) 

  D1 = e1 ,  D2 = e2  ,  D3 = D13 e1 + 1–D13
2  e3  ,  Di = 0 (i=0,4,5,6,7)  , (10.2b) 

 Element E3 (D12=0, D13=0, D23≠0) 

  D1 = e1 ,  D2 = e2  ,  D3 = D23 e2 + 1–D23
2  e3  , Di = 0 (i=0,4,5,6,7)  . (10.2c) 

It then follows from (8.2) and (8.7) that for these elements 

  V = H1H2H3  , Vi = 0  (i=1,2,3,4)  , (10.3) 

and the position vector X* in (5.1) reduces to 

  X* = 
j=1

3

  j Dj  , (10.4) 

where D0 has been set equal to zero. Also,  for the example problems considered in this 

section use is made of linearized constitutive equations associated with the compressible 

Neo-Hookean strain energy function (4.18). 

 Now, with reference to the base vectors ei' of another fixed rectangular Cartesian 

coordinate system, the components {X i
*', u i

*', Tij
*'} of the position vector X*, the 

displacement vector u* and the stress tensor T*, respectively, of an exact solution of the 

linear equations of elasticity can be expressed in the forms 

  X* = 
i=1

3

  X i
*' ei' ,   u

* = 
i=1

3

  u i
*' ei'  ,   T

* = 
i=1

3

  
j=1

3

  Tij
*' (ei'ej')  . (10.5) 

Moreover, the classical pure bending solution (e.g. Sokolnikoff, 1956) of the three 

dimensional equations of isotropic elasticity for a rectangular parallelepiped can be 

written in the form 
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  u* = ( X1
*' X2

*') e1'  – 
1

2
  [(X1

*')2 +  (X2
*')2 –  (X3

*')2] e2'   – ( X2
*' X3

*') e3'  , 

  T* = 2(1+*)X2
*'  (e1'e1' )  ,  (10.6) 

where  controls the magnitude of the pure bending.  Similarly, the simple torsion-like 

solution in (Jabareen and Rubin, 2007c) can be expressed in the form 

  u*= (– X2
*'X3

*') e1'  + (– X1
*'X3

*')  e2'  + (X1
*'X2

*') e3'   ,  

  T* =  [– (1+)X3
*' (e1'e2' +e2'e1' ) + (1–)X2

*' (e1'e3' +e3'e1' )] , (10.7) 

where the constant  is the twist per unit length in the e1'  direction and the constant  

controls the warping of the cross-section with unit normal e1' .  Moreover, with the help of 

(10.4) and (10.5) the components X i
*' are determined by the convected coordinates j 

  X i
*' = 

j=1

3

  (ei' • Dj)  
j , (10.8) 

so that the solutions (10.6) and (10.7) can be expressed as function of j. 

Within the context of the linear theory of a CPE (Nadler and Rubin, 2003) the director 

displacements i are defined such that 

  di = Di + i  , (i=0,1,…,7)  , (10.9) 

and for the special elements defined by (10.2) the linearized forms of the inhomogeneous 

strains i become 

  i = i+3    (i=1,2,3,4)  .  (10.10) 

 As explained in (Nadler and Rubin, 2003), the values  i
* of the element director 

displacements i which correspond to the exact displacement field u* need to be properly 
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defined. Specifically, for these element shapes the values  i
* are determined by the 

equations in (Nadler and Rubin, 2003) which connect  i
* to integrals over the reference 

element region P0 of derivatives of u* with respect to the convected coordinates 

  0
* = 

1

V* 
P

 u* dV*  ,   i
* = 

1

V* 
P

 
∂u*

∂i
 dV*  (i=1,2,3) , 

  4
* = 

1

V* 
P

 
∂2u*

∂1∂2
 dV*  ,  5

* = 
1

V* 
P

 
∂2u*

∂1∂3
 dV*  , 

  6
* = 

1

V* 
P

 
∂2u*

∂2∂3
 dV*  , 7

* = 
1

V* 
P

 
∂3u*

∂1∂2∂3
 dV*  . (10.11) 

In particular, for the exact solutions (10.6) and (10.7) and the element shapes (10.2) it can 

be shown that these expressions yield 

  1
* = 2

* = 3
* = 7

*  = 0  , (10.12) 

so that when i are replaced by the exact values  i
* the linearized values of 4

i  vanish 

  4
1 = 4

2 = 4
3 = 0  , (10.13) 

and the with the help of (7.4) and (9.5) the linearized forms of the constitutive equations 

(9.4) reduce to 

  d1/2T = 0  ,  ti = 0  (i=0,1,2,7)  , 

   t4 = 
D1/2V

6(1–)
 
j=1

12

  [B1j H2D1 + B3j H1D2 + B7j H3D3] bj , 

  t5 = 
D1/2V

6(1–)
 
j=1

12

  [B5j H3D1 + B8j H2D2 + B4j H1D3] bj , 
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  t6 = 
D1/2V

6(1–)
 
j=1

12

  [B9j H1D1 + B6j H3D2 + B2j H2D3] bj , (10.14) 

where di have been replaced by the reference values Di.  Also, the values of mi in (5.14) 

associated with the exact solutions (10.6) and (10.7) are given by 

  mi = 0  (i=0,1,2,3,7)  ,   mi = 
∂P0

 Ni T* N* dA* (i=4,5,6) , (10.15) 

where ∂P0 is the reference boundary of the CPE, N* is the unit outward normal to ∂P0 

and dA* is the reference element of area.  It then follows that within the context of the 

linearized theory, the equations of equilibrium associated with the bending (10.6) and 

torsion (10.7) solutions reduce to three vector equations 

  ti – mi = 0  (i=4,5,6)  . (10.16) 

Analytical expressions for Bij can be developed by matching the solutions (10.6) and 

(10.7) for each of the element shapes (10.2).  Specifically, with reference to the element 

shape E1 in (10.2a) consider six bending solutions associated with specifications of the 

orientations of ei' relative to Di 

 Bending B1:  e1'  = D1 ,  e3'  = D3 , (10.17a) 

 Bending B2: e1'  = D1 ,  e2'  = D3 , (10.17b) 

 Bending B3: e1'  = D2 , e3'  = D3 , (10.17c) 

 Bending B4: e1'  = D2 ,  e2'  = D3 , (10.17d) 

 Bending B5: e1'  = D3 , e3'  = D2 , (10.17e) 

 Bending B6: e1'  = D3 , e3'  = – D1 . (10.17f) 

Also, consider two torsion solutions associated with specifications 
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 Torsion T1: e1'  = D1 ,  e3'  = D3 , (10.18a) 

 Torsion T2: e1'  = D2 , e3'  = D3 . (10.18b) 

 For each bending and torsion solution the exact values  i
* are determined by (10.11), 

the linearized values of j
i are determined using (9.1) and (10.10) with i replaced by  i

* 

and the resulting constitutive equations for ti are determined by (10.14).  Also, the values 

of the warping constant  corresponding to nearly pure torsion being determined by 

 Torsion T1: m6 • D1 = 0       = 
H2

2(1–D12
2 )–H3

2

H2
2(1–D12

2 )+H3
2 , (10.19a) 

 Torsion T2: m5 • D2 = 0       = 
H1

2(1–D12
2 )–H3

2

H1
2(1–D12

2 )+H3
2  . (10.19b) 

For each bending solution the value of  can be eliminated in the resulting equations of 

equilibrium (10.16) and the value of  can be eliminated from each of the equations of 

equilibrium associated with the torsion solutions. Also, the values (10.19) are used in the 

resulting torsion equations.   It therefore follows that the each of the solutions (B1)-(B6), 

(T1) and (T2) yield nine scalar equations of equilibrium which total 72 scalar equations 

to determine the values of Bij as functions of Hi and D12. Some of these scalar equations 

are trivially satisfied and others are redundant.  In particular, using a symbolic program 

like Maple it can be shown that these equations can be solved for Bij such that 

  det(Bij) > 0  . (10.20) 

 Similar procedures can be used to define bending and torsion solutions for the 

element shapes E2 and E3 and the resulting equations can be solved for Bij to determine 
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the dependence on the metrics D13 and D23.  Next, introducing the auxiliary variables 

{12, 13, 23} defined by 

 For  D12
2 +D13

2 +D23
2  = 0: 

  12 = 13 = 23 = 0  , (10.21a) 

 For  D12
2 +D13

2 +D23
2  > 0: 

  12 = 
D12

2

D12
2 +D13

2 +D23
2   ,  13 = 

D13
2

D13
2 +D13

2 +D23
2   ,  23 = 

D23
2

D13
2 +D13

2 +D23
2   , (10.21b) 

it is possible to denote the values of Bij associated with the solutions of the three 

elements E1-E3 in (10.2) by B ij
12 for E1, by B ij

13 for E2, and by B ij
23 for E3.  Also, the 

matrix Bij
0 is defined so that it yields a strain energy function  equivalent to that 

obtained in (Nadler and Rubin, 2003) for a rectangular parallelepiped, when the value of 

the torsion function b*(1) is taken to be 1/2 as suggested in (Jabareen and Rubin, 2007c).  

Then, the general expression Bij(D12,D13,D23) which combines these solutions is given 

by 

  Bij(D12,D13,D23)  = (1–12–13–23) Bij
0 + 12 B ij

12 + 13 B ij
13 + 23 B ij

23 . (10.22) 

Now, using the definitions (10.21) it follows that each of the coefficients                        

{(1–12–13–23), 12, 13, 23} is non-negative and that at least one of them is positive. 

Also, each of the matrices {Bij
0, B ij

12, B ij
13, B ij

23} is positive definite so that the combined 

matrix Bij(D12,D13,D23) is also positive definite for all reference element shapes. 
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11. A test for path-dependence 

 The formulation of the CPE for nonlinear elasticity treats the element as a structure 

and determines the kinetic quantities by derivatives of a strain energy function so that the 

dissipation vanishes.  It therefore follows that the CPE formulation is automatically 

hyperelastic and predicts path-independent results. In contrast, element formulations 

which modify full integration methods like those associated with enhanced strain or 

incompatible mode methods can introduce path-dependence of the results. Although an 

analytical proof is required to ensure that an element formulation is hyperelastic for all 

deformations, only a single calculation is needed to prove that an element formulation is 

path-dependent.   

 Jabareen and Rubin (2007a) introduced a simple simulation which can be used to test 

element formulations for path-dependence and the elements in Table 1.1 were tested. In 

the examples considered here and in the rest of the text the elements ABBAQUS-6, 

ADINA-2, ANSYS-3 and FEAP-3 in Table 1.1 are denoted by (AB), (AD), (F), 

respectively.  Also, the generalized CPE is denoted by (C).   

 It has been shown in (Jabareen and Rubin, 2007a) that the response of (F) is similar to 

that of other enhanced strain and incompatible mode elements.  Therefore, for most of the 

example problems presented in the following sections, comparisons will be limited to the 

element in FEAP.  However, the results of the (Q1P0) 3-D brick element and the mixed 

higher order nine node quadrilateral element [denoted by (HO9)] in FEAP will be used 

for comparison of some of the examples using nearly incompressible material response. 

 In order to test potential path-dependency of element formulations, consider a single 

brick element which is a cube in its reference configuration with edges of length  L = 1 m 
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(see Fig. 11.1).  The four nodes located by Xi (i=1,2,3,4) are fixed, the nodes Xi (i=5,6,7) 

are free and the node X8 is deformed to the location x8 by the displacement u8 

  x8 = X8 + u8  . (11.1) 

Specifically, the displacement u8 is characterized by a sequence of straight line segments 

that connect the end points A-F shown in Fig. 11.1 which are characterized by 

  uA = 0 ,  uB = – e1 ,  uC = – e1 –  e2 ,  uD = –  e1 –  e2 –  e3 , 

  uE =  –  e2 –  e3 ,   uF =  –  e3 ,   = 0.25 m , (11.2) 

The total external work done on the element is given by 

  W =  f8 • 
•
u8 dt  , (11.3) 

where f8 is the external nodal force applied to node 8. 

 

 

 

 

 

 

 

 

 

Fig. 11.1  Sketch of the cubical element showing the numbering of the nodes and the 

paths used to test path-dependency of various element formulations.  
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  To quantify the error associated with path-dependency it is convenient to introduce 

the quantities 

  WA
*  = WABCDEFA  ,   WA

** = WAFEDEFA  , 

  WD
*  = WABCD  ,  WD

** = WAFED  , 

  EA
*  = 

WA
*

WD
*    ,   EA

** = 
WA

**

WD
*    ,  ED = 

WD
*–WD

**

WD
*   . (11.4) 

Here, WA
*  denotes the work done on the element in a single cycle of deformation 

following the path ABCDEFA, WA
** denotes the work done in a single cycle of the path 

AFED and its reverse path DEFA, WD
*  is the work done during the path ABCD and WD

** 

is the work done during the path AFED to the same point D.  Also, EA
*  and EA

** are the 

relative errors for the cycles associated with WA
*  and WA

**, respectively and ED is the 

relative error associated with the two different paths to the point D.  The trapezoidal rule 

was used to integrate (11.3) and each segment of the deformation was divided into 

N=250 equal steps to ensure accuracy. 

 Three types of element response are possible: hyperelastic, Cauchy elastic and 

hypoelastic.  For hyperelastic element response the nodal forces maintaining equilibrium 

of any configuration and the work done between two configurations are both path-

independent.  For Cauchy elastic element response the nodal forces maintaining 

equilibrium of any configuration are path-independent but the work done between two 

configurations is path-dependent.  For hypoelastic element response the nodal forces 

maintaining equilibrium of any configuration and the work done between two 

configurations are both path-dependent.  
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Element WD
* (MJ) EA

* (%) EA
** (%) ED(%) Type of  

elasticity 

C 40.6 8.3E–5 2.1E–14 –8.3E–5 Hyper 

AB 36.8 0.393 0.011 –3.18 HYPO 

AD 38.9 1.1E–5 –1.0E–8 –1.1E–5 Hyper 

AN 36.8 0.393 0.011 –3.18 HYPO 

F 41.3 8.6E–5 –2.6E–15 –8.6E–5 Hyper 

  

Table 11.1  Path-independence tests.  Errors in the work and description of the type of 

elastic response. 

 Table 11.1 presents the results for the Cosserat point element (C) and for the other 

enhanced strain/incompatible mode elements. The theoretical values of {EA
* , EA

**, ED} 

for the Cosserat point element are zero.  Consequently, the numerical values for the 

Cosserat solution in Table 11.1 represent the combined numerical error due to: the 

convergence criterion used to satisfy equilibrium, machine precision and numerical 

integration of the work done using the trapezoidal rule.  Thus, the error in the constitutive 

equation of a particular element can be determined by comparing the relative error with 

that of the Cosserat element. Furthermore, it is noted that the differences in the values of 

the work WD
*  given in Table 11.1 reflect differences in the specific treatment of 

inhomogeneous deformations in each of the elements. Moreover, the errors EA
* * 

associated with a cycle composed of a path and its reverse path are typically smaller than 

those EA
*  associated with a general cycle.  The errors ED associated with two different 

paths to the same point can be up to 10 times those of  EA
* .  Also, it is noted that negative 

values of  EA
*  or EA

* *  in Table 11.1 indicate that the element generates energy whereas 

positive values of these quantities indicate that the element dissipates energy. 
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Fig. 11.2  Residual element distortion after 10 deformation cycles ABCDEFA for the 

inelastic elements (AB) and (AN). The displacements have not been enhanced. 

 The results in Table 11.1 indicate that the elements (AD) and (F) exhibit hyperelastic 

response for the paths considered, while the elements (AB) and (AN) exhibit hypoelastic 

response. Although the values of EA
*  in Table 11.1 for the elements (AB) and (AN), based 

on incompatible modes or enhanced strains, seem relatively small, these errors are 

cumulative when multiple cycles are performed.  Figure 11.2 shows the residual element 

distortion after 10 deformation cycles ABCDEFA. It is emphasized that the 

displacements in Fig. 11.2 have not been enhanced.  Also, it is noted that multiple 

deformation cycles need to be calculated for problems like rolling tires or vibrating 

MEMS devices so that these accumulated errors may be quite significant in certain 

calculations. 

 

 

(a) AB (b) AN 
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12. Example problems of thin structures with irregular element shapes 

 The deformation field associated with the solution of a practical problem typically is 

inhomogeneous so that the response of the CPE is influenced by the specific form of the 

inhomogeneous strain energy being used.  Mesh refinement tends to cause the response 

of the CPE to be dominated by its response to homogeneous deformations with the  

influence of the inhomogeneous strain energy becoming negligible.  Consequently, since 

the CPE satisfies the patch test the predictions of the CPE should converge to the exact 

solution with mesh refinement.   However, the rate of convergence is influenced by 

details of the functional form for the inhomogeneous strain energy. 

 In order to study the accuracy of the inhomogeneous strain energy function it is best 

to focus attention on problems that are dominated by inhomogeneous deformations.  This 

can be accomplished by focusing on the response of thin structures to bending fields.  

More details of the examples discussed in this section can be found in (Jabareen and 

Rubin, 2007a,b,e). 

12.1:  Shear load on a thin cantilever beam (small deformations) 

 Figure 12.1 shows a sketch of a thin cantilever beam with dimensions 

  L = 200 mm ,  H = W = 10 mm , (12.1) 

which is fully clamped at one of its ends and is subjected to a shear force P (modeled by a 

uniform shear stress) applied in the e2 direction to its other end.  The lateral surfaces are 

traction free.  The mesh {20nnn} is defined by distorting the middle cross-section in 

its reference configuration (using the parameters a1,a2,a3,a4 shown in Fig. 12.1), with 10n 

elements on each side of this cross-section and n elements in each of the e2 and e3 

directions.   
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Fig. 12.1  Shear load on a thin cantilever beam.  The irregular element mesh is based on 

the distorted center cross-section. 

 Two cases of element irregularity are considered 

  Case I:  a1= a , a2 = – a , a3 = a , a4 = – a  ,  

  Case II:  a1= a , a2 = a , a3 = – a , a4 = – a  , (12.2) 

where the parameter a/H defines the element irregularity. Both of these cases cause the 

middle surface to remain planar with the normal to that surface being in the e1–e2 plane 

for Case I and being in the e1–e3 plane for Case II.  The value 

  uA
*

2 = 0.21322 mm   for   P = 0.1 N (12.3) 

of the e2 component of the displacement of point A (see Fig. 12.1) predicted by the 

generalized CPE (C) with the most refined mesh (n=5) and zero irregularity (a/H=0) is 

considered to be exact and the error E associated with the predictions uA2 of other 

calculations for the same value of P is defined by 
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  E = 
uA2–uA2

*

|uA2
* |

  . (12.4) 

 

 

Fig. 12.2  Shear load on a thin cantilever beam (small deformations). (a,c) Errors in the 

displacement of the point A in the e2 direction versus the distortion parameter a/H and; 

(b,d) the errors versus n for the mesh {20nnn} defined for two cases of element 

distortion.  

 Figures 12.2a,b show the results for Case I and Figs. 12.2c,d show the results for Case 

II.   The error is plotted as a function of the irregularity parameter a/H in Figs. 12.2a,c 

and convergence is examined in Figs. 12.2b,d. Ideally the response should be insensitive 

to the value of a/H.  These figures show that the two elements converge to the same value 
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for the refined mesh (n=5) and large irregularity a/H=2. They also show that the 

predictions of (C) are slightly more accurate than those of (F).  

12.2:  Shear load on a thin slanted cantilever beam (small deformations) 

 Figure 12.3 shows a sketch of a thin slanted cantilever beam with dimensions (12.1) 

and with the slanting angle .  The boundary conditions are the same as those for the 

previous example except that the shear load P is applied in the e3 direction to cause out-

of-plane bending.  Again the mesh is taken to be {20nnn} with 20n elements in axial 

direction of the beam.  All of the elements have parallelogram cross-sections in the e1–e2 

plane with sides parallel to the ends of the beam. 

 

Fig. 12.3  Shear load on a thin slanted cantilever beam.   

 Figure 12.4a shows the displacement component uA3 of point A (see Fig. 12.3) in the 

e3 direction as a function of  for the most refined mesh (n=5).  The error E in uA3 is 

defined in a similar manner to  (12.4) with the exact value uA3
*  taken to be that predicted 

by (C) for each value of  with n=5 and with the load P given by (12.3).  Figures 12.4b,c 
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show that (C) and (F) converge to the same values and that (C) is slightly more accurate 

than (F) for n=1 and large values of .   

 

 

Fig. 12.4  Shear load on a thin slanted cantilever beam (small deformations). (a) 

Displacement uA3 of the point A in the e3 direction versus the angle  for n=5 with the 

mesh {20nnn}; (b) errors in uA3 versus  for n=1; (c) errors in uA3 versus n for     

=60 deg.  
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12.3:  Lateral torsional buckling of a thin cantilever beam (large deformations) 

 

Fig. 12.5  Shear load on a thin twisted cantilever beam.  The element mesh is based on 

the distorted center cross-section. 

 Figure 12.5 shows a sketch of a thin twisted cantilever beam which in its unstressed 

reference configuration has length L and a rectangular cross-section with height H and 

width W given by 

  L = 200 mm ,  H = 10 mm ,  W = 2 mm  . (12.5) 

Each of the cross-sections is twisted by the angle  which varies linearly from zero at the 

clamped end to  at the loaded end. Also, the load P is applied in the constant direction 

parallel to the long edges of the rectangular cross-section in its reference configuration. In 

order to stimulate lateral torsional buckling the value of  is taken to 0.1 deg which 

introduces a small imperfection in the reference geometry of the beam. Furthermore, the 
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element irregularity shown in Fig. 12.5 is specified by Case I in (12.2) and the mesh is 

given by {20nnn} with 20n elements in axial direction of the beam. 

 

 

Fig. 12.6   Large deformation lateral torsional buckling of a thin cantilever beam with a 

small pre-twist =0.1 deg. using the mesh {20nnn}.  The influence of element 

irregularity is shown in Figs. 12.6a,b for n=2 and in Figs. 12.6c,d for n=3. 

 To investigate rotation of the beam's end it is convenient to consider the difference in 

the displacements of the points A and B shown in Fig. 12.5.  Specifically, the quantity u 

is defined by   

  u = (uB – uA) • e2   .  (12.6) 
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Figure 12.6 shows the results for large deformation lateral torsional buckling of a thin 

cantilever beam.   In this figure the curves denoted by (E) are predicted by (C) with n=5 

and a/H=0 and are considered to be exact.   The results in this figure show that for n=2  

the predictions are not yet converged and are sensitive to element irregularity whereas for 

n=3 the predictions are reasonably converged and reasonably insensitive to element 

irregularity.   Also, it can be seen that (C) and (F) converge to the same results.  

12.4: Point load on the center of a thin fully clamped rhombic plate (small deformations) 

 

 

Fig. 12.7  Point load on the center of a thin fully clamped rhombic plate.   

 Figure 12.7 shows a sketch of one quarter of a thin fully clamped rhombic plate with 

dimensions 

  L = 500 mm ,  H = 10 mm  ,  (12.7) 

which is loaded at its center by a point force.  The value  L corresponds to one half of the 

actual length of each edge and the value 

   P = 1 N , (12.8) 
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corresponds to one quarter of the load that would be applied to the center of the entire 

plate.  The mesh used for the quarter region of the plate is defined by {10n10nn} with 

n elements through the thickness. 

 

 

Fig. 12.8  Point load on the center of a thin fully clamped rhombic plate (small 

deformations). Displacement uA3 of the point A in the e3 direction versus the angle  for 

n=5 with the mesh {10n10nn}; (b) errors in uA3 versus  for n=1; (c) errors in uA3 

versus n for =45 deg.  

 Figure 12.8a shows the component uA3 of the displacement of the point A in the e3 

direction as a function of  for the most refined mesh (n=5).  The error E in this 

displacement is defined in a similar manner to (12.4) with the exact value uA3
*  taken to be 
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that predicted by (C) for each value of  with n=5 and the load P given by (12.8).  Also, 

Figs. 12.8b,c show that (C) and (F) converge to the same values. 

12.5: Point load on the center of a thin fully clamped square plate with an irregular 

element mesh (small deformations)  

 

Fig. 12.9  Point load on the center of a thin fully clamped square plate with an irregular 

element mesh.   

 Figure 12.9 shows a sketch of one quarter of a thin fully clamped square plate with 

dimensions (12.7) that is loaded by a point force at its center. Only one quarter of the 

plate is modeled and the value P given by (12.8) corresponds to one quarter of the load 

that would be applied to the center of the entire plate.  Irregular elements are specified by 

moving the center point of the quarter section to the position characterized by the lengths 

a1 and a2 (shown in Fig. 12.9) defined by two cases 

  Case I:  a1 = a2 = a  ,   – 1 ≤ 
4a

L
 ≤ 1   , 
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  Case II:  a1 = 
L

4
 cos() , a2 = 

L

4
 sin()  , 0 ≤  ≤ 2  . (12.9)  

The quarter section of the plate is meshed by {10n10nn} with each subsection being 

meshed by {5n5nn} and with n elements through the thickness. The error E in the 

displacement component uA3 of point A in the e3 direction is defined in a similar manner 

to (12.4) with the exact value uA3
*  taken to be that predicted by (C) for regular elements 

(a/L=0) with n=5 

  uA3
*  = 0.16893 mm  for  P = 1 N  . (12.10) 

 

Fig. 12.10  Point load on the center of a thin fully clamped square plate (small 

deformations). Errors in the displacement of the point A in the e3 direction versus the 

distortion parameters (a) 4a/L and; (b) the angle  for two cases of element irregularity 

with the mesh {10101}.  

 Figures 12.10a,b show the error for n=1 as a function of the irregularity parameter 

4a/L for Case I (Fig. 12.10a) and as a function of /(2) for Case II (Fig. 12.10b). From 

these figures it can be seen that that (C) and (F) are both relatively insensitive to the 

magnitude and type of element irregularity.  
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12.6: Point load on the corner of a thin partially clamped rhombic plate (large 

deformations) 

 

 

 

Fig. 12.11  Point load on a partially clamped rhombic plate (large deformations).  

Predictions of the generalized CPE for the mesh {10n10n1} with n = 2 and P = 1 kN. 

 Figure 12.11 shows the deformed shapes of a thin partially clamped rhombic plate 

subjected to a point load on its corner for two different angles  and the same value of the 

load P.  The plate is fully clamped on two edges and the other edges and major surfaces 

are traction free.  The dimensions are given by (4.8) as shown in Fig. 11 (with L now 

being the length of the plate's edge) and the point force P given by 

  P = 1 kN  . (12.11) 

The mesh is specified by {10n10n1} and the exact values u3
* of the displacement of the 

corner in the e3 direction is determined by the most refined solution (C) with n=5 

  u3
* = 0.21084 m  for  = 0 deg ,    u3

* = 0.39306 m  for  = 60 deg  . (12.12) 

(a)  = 0 deg (b)  = 60 deg 

P 

P 
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Fig. 12.12   Point load on a partially clamped rhombic plate (large deformations). 

Predictions of the load P versus displacement u3 at the loaded corner and convergence of 

the error in the displacement for the mesh  {10n10n1} with the load P = 1 kN and 

different angles .  

 Figures 12.12 show the load P versus displacement curves for n=2 and the 

convergence curves for two values of the angle .  Comparison of Figs. 12.12a,c shows 

that the rhombic plate with angle =60 deg is more flexible than that for =0 deg and that 

(C) and (F) converge to the same solution. Also, Fig. 12.12d shows that the convergence 

properties of (C) are slightly better than those of (F) for the case when   =60 deg. 
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13. Example problems exhibiting robustness to hourglass instabilities 

 Reese and Wriggers (1996, 2000) have shown that enhanced strain formulations, like 

that proposed by Simo et. al. (1993), can predict unphysical hourglass buckling modes for 

plane strain compression of a block.  In order to examine this phenomena (Jabareen and 

Rubin, 2007a) considered a square block with edge length L=1 m which is compressed 

between two smooth rigid parallel end plates with the other two edges being free (see Fig. 

13.1.  Plane strain deformations are modeled using one 3-D element through the block's 

thickness and eliminating displacements in the out-of-plane direction.  

 

 

 

 

 

 

 

Fig. 13.1  Plane strain compression of a block showing the load P and the stretches 1 

and 2 for the homogeneous solution. 

 For the homogeneous solution the stretches in the e1 and e2 directions are denoted by 

1 and 2, respectively (see Fig. 13.1). At a critical value of 2 (< 1) the block buckles in 

its plane.  In order to calculate the post-buckling response of this structure it is necessary 

to use special methods like arc-length control because a spring-back phenomena occurs 

e2 

e1 

1 

2 

undeformed 

deformed 

A 

A 

P 



61 

as the block buckles in shear.  Moreover, a small imperfection is introduced in the 

reference mesh to trigger the shear buckling mode.  Figure 13.2 shows that (C) predicts 

physical shear buckling modes for two nearly perfect regular meshes {10101} and 

{20201} and for two nearly perfect irregular meshes.  From this figure it can be seen 

that the effect of element irregularity is not large. 

 

 

 

Fig. 13.2  Compression of a block.  Physical shear buckling modes predicted by (C) for: 

(a,b) two nearly perfect regular meshes {10101} and {20201}; and (c,d) two nearly 

perfect irregular meshes. 

 Fig. 13.3 shows the predictions of an element in ABAQUS (AB) which is based on 

reduced integration with hourglass control.  From this figure it can be seen that this 

element (AB) produces physical shear buckling which follows the predictions of the 

(a) {10101}, uA2 = – 0.360 m (b) {20201}, uA2 = – 0.342 m 

(c) {10101}, uA2 = – 0.389 m (d) {20201}, uA2 = – 0.348 m 
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Cosserat element (C). However, (AB) ceases to converge and thus cannot predict the full 

post-buckling behavior. Moreover, it is noted that the buckled mode predicted by (AB) 

shown in Fig. 13.3 is presented for the load just before the program ceased to converge. 

  

Fig. 13.3  Compression of a block.  Predictions of (C) and (AB) in ABAQUS for a nearly 

perfect regular mesh {20201}; (a) displacement components; (b) compressive force P; 

and (b) post-buckling shape. 

 

 

 

Fig. 13.4  Compression of a block. Unphysical hourglass buckling modes at bifurcation 

predicted by (F) for two perfect regular meshes {10101} and {20201}. 
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Fig. 13.5  Compression of a block. Unphysical hourglass buckling modes predicted by 

(AB), (AD) and (AN) for a refined nearly perfect regular mesh {20201}. 

 As mentioned previously, the elements based on enhanced strains and incompatible 

modes can exhibit unphysical hourglass modes for problems with high compression 

combined with bending.  Specifically, Fig. 13.4 shows the results of calculations using 

the enhanced strain element in FEAP (F) for two perfect regular meshes {10101} and 

{20201}.  From this figure it can be seen that at the bifurcation point uA2 = – 0.330 m 

(the point where the lowest eigenvalue of the global tangent stiffness changes sign 

(c) (AN), uA2 = – 0.295 m 

(a) (AB), uA2 = – 0.297 m (b) (AD), uA2 = – 0.389 m 
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between uA2 = – 0.3303 m and uA2 = – 0.3304 m), the associated buckling mode shapes 

are characterized by unphysical hourglassing for both meshes. 

 The enhanced strain and incompatible mode elements in ABAQUS (AB), ADINA 

(AD) and ANSYS (AN) exhibit unphysical hourglasing that causes lack of convergence 

for (AB) and (AN).  Figure 13.5 shows the deformed shapes predicted by these elements 

for a nearly perfect regular mesh {20201} corresponding to the load just before the 

programs ABAQUS and ANSYS ceased to converge.  The element (AD) predicts a post 

buckled response that is corrupted by hourglassing. 
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14. Example problems exhibiting robustness to near incompressibility 

 

Fig. 14.1  Plane strain indentation of a rigid plate into a block showing the boundary 

conditions and definition of element irregularity.  

 Jabareen and Rubin (2007e) considered the example of plane strain indentation of a 

rigid plate into a nearly incompressible elastic block to examine the response of (C) in the 

nearly incompressible limit. Figure 14.1 shows a sketch of the boundary conditions on a  

block which has length 2L, height L and depth W. Material points on the block's sides 

and bottom remain in contact with a rigid container and are allowed to slide freely. The 

top surface of the block is loaded by a rigid plate (AB) of length L which makes perfect 

contact with the block so that material points in contact with the rigid plate move only 

vertically.  The remaining half of the block's top surface is traction free and the 

dimensions of the block are given by 

  L = W = 1 m  . (14.1) 
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 Irregular meshes are defined by dividing the block into four subsections with the 

central node moving to the position characterized by the lengths {a1, a2} (shown in     

Fig. 14.1) defined by two cases 

  Case I:  a1 = a ,  a2 = 0  ,   – 1 ≤ 
8a

3L
 ≤ 1   ,  uA2 = – 0.1 m ,  n = 5 , 

  Case II:  a1 = 0 ,  a2 = a  ,   – 1 ≤ 
8a

3L
 ≤ 1  ,  uA2 = – 0.1 m ,  n = 5  .  (14.2) 

The entire block is meshed by {8n4n1} with 4n elements in the e1 direction and 2n 

elements in the e2 in each of the subsections. The point C (shown in Fig. 14.1) is located 

on the free top surface at a distance 0.25 L from the corner B of the rigid plate.  Also, the 

material is considered to be nearly incompressible. 

 

Fig. 14.2  Plane strain indentation of a rigid plate into a nearly incompressible block.  

Convergence of the error E in the displacement uC2 of the point C using the regular mesh 

{8n4n1} for uA2 = – 0.1 m versus: (a) n; and (b) versus the number of degrees of 

freedom DOF. 
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 Figure 14.2 shows convergence of the solution for the regular (a=0) mesh {8n4n1} 

and uA2 = – 0.1 m.  The converged value uC2
*  of the displacement of the point C in the e2 

direction predicted by (C) for a regular mesh with n=20 is considered to be exact and is 

given by 

  uC
*

2 = 0.071895 m   for  uA2 = – 0.1 m   with  n = 20   . (14.3) 

The error E of in the values uC2 predicted by calculations of other elements and meshes is 

defined by an expression similar to (12.4).   Figure 14.2 shows the convergence of this 

error predicted by {C, Q1P0, HO9}, where (HO9) denotes a mixed higher order nine 

node quadrilateral element in FEAP.  This error is plotted relative to n for the mesh 

{8n4n1} in Fig. 14.2a and is plotted relative to the degrees of freedom (DOF, 

calculated for plane strain response) in Fig. 14.2b. From Fig. 14.2a it is not clear if 

(Q1P0) exhibits a locking behavior by converging to a value different from (C) or 

whether the convergence rate is very slow.  To validate the converged value of (C) for 

n=20, calculations were also performed using the mixed higher order element (HO9) with 

the mesh {8n4n1} up to n=10.  In particular, it can be seen in Fig. 14.2b that (HO9) 

tends to converge to the value predicted by (C). 

 Figure 14.3 presents the errors E in the displacement uC2 for two cases of element 

irregularity and for the mesh {8n4n1} with n=5 and uA2 = – 0.1 m.   Since there is a 

strain concentration near the edge of the plate it is expected that a non-fully converged 

solution will be sensitive to element irregularity.  In particular, it can be seen from Fig. 

14.3a that (Q1P0) is more sensitive to element irregularity than (C) for positive values of 

a for Case I which cause the elements near the plate's edge B to be more irregular.  The 
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results in Fig. 14.3b show that the error reduces slightly for increasing positive values of 

a for Case II which cause the elements near the plate's edge B to be more refined. 

 

Fig. 14.3  Plane strain indentation of a rigid plate into a nearly incompressible block.  

Error E in the displacement uC2 of the point C for two cases of element irregularity and 

for the mesh {8n4n1} with n=5 and uA2 = – 0.1 m. 

 Figure 14.4 shows nonlinear load curves using the regular mesh {8n4n1} for 

different values of n.  These figures again show that (C) predicts more flexible response 

than (Q1P0) for the coarser meshes.  Figure 14.5 shows the deformed shapes for the 

regular mesh {8n4n1} with n=3 for different values of loads.  In particular, it can be 

seen that the flexibility of (C) allows the elements near the plate's corner to roll around 

the corner more easily than allowed by (Q1P0).  Since the flexibility of (C) has been 

validated relative to the mixed higher order element (HO9) it is concluded that the 

stiffness shown by (Q1P0) is unphysical. 
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Fig. 14.4   Plane strain indentation of a rigid plate into a nearly incompressible block 

showing nonlinear load curves using the regular mesh {8n4n1}  

for different values of n. 
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Fig. 14.5  Plane strain indentation of a rigid plate into a nearly incompressible block 

showing the deformed shapes for the regular mesh {8n4n1} with n=5.  The left column 

shows the results for (C) and the right column shows the results (Q1P0). 

  

C Q1P0 
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15. Conclusions 

 The previous sections summarize the development of a 3-D brick Cosserat Point 

Element (CPE) for the numerical solution of problems in nonlinear elasticity.  The CPE is 

based on the theory of a Cosserat point which is a continuum theory that introduces 

balance laws for the deformation of a structure that is "thin" in three-dimensions.  In 

contrast with standard finite element methods, the CPE treats the finite element as a 

structure and the kinetic quantities are determined by derivatives of a strain energy that 

characterizes resistance to all modes of deformation of the structure.  In particular, a 

nonlinear form of the patch test is used to place restrictions on this strain energy function 

which ensure that the CPE reproduces all homogeneous solutions exactly for all reference 

element shapes.  Special attention has been focuses on developing an analytical form for 

the strain energy of inhomogeneous deformations that causes the predictions of the CPE 

to be relatively insensitive to element irregularity even for thin structures like shells and 

rods. 

 Example problems have been considered which show that the CPE is as accurate as 

elements based on enhanced strains and incompatible modes for thin structures and is 

free of the hourglass instabilities observed in these elements for deformations with high 

compression combined with bending.  Also, the CPE is free of locking due to near 

incompressible material response.  Consequently, the CPE is truly a user friendly element 

that can be used with confidence to solve problems in nonlinear elasticity. 

 Although the CPE approach has proved very successful for nonlinear elastic materials 

it is not clear how it can be generalized for more complicated material response.  An 

elastic solid has the special simple property that it has a unique shape when it is 
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unloaded.  In contrast, and elastic-viscoplastic material can have an infinite number of 

stress-free shapes which differ by a general homogeneous deformation.  Thus, in order to 

generalize the CPE for elastic-viscoplastic materials it is necessary to first understand 

how the CPE can be generalized for fluids which have no unique stress-free shapes. At 

present it appears that this area of research will remain challenging for a number of years 

to come. 
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