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Sous I'impulsion de la fédération F2M une série de 6 séances de cours (en 3 demi-

journées) est organisée en novembre et décembre 2008. Elle s’adresse a tous les
étudiants, ingénieurs et chercheurs et porte sur le theme :

Elements of the Mechanics and Physics of Rubber Elasticity
par David M. Parks
Department of Mechanical Engineering -MIT
Centre des Matériaux - Mines ParisTech

Abstract

A short, self-contained series of six lectures will be presented. In an initial approach, basic
concepts and results in continuum thermo-mechanics will be reviewed and applied to aspects of
the large deformation of elastomeric solids. A complementary approach to constitutive modeling
is informed by consideration of macromolecular aspects of elastomeric structure, bonding, and
deformation mechanisms, along with microstructural aspects of matrix/filler/void interactions. In
a concluding session, we will review recent developments in advanced experimentation and
constitutive modeling of rubbers, drawn from a list of topics including strain crystallization,
anisotropic hyperelasticity, and elastomer nanocomposites.

Contact: Les personnes intéressées sont priées de contacter Samuel.Forest@ensmp.fr. Une
attestation de suivi du cours sera fournie a ceux qui désirent faire valoir ce cours comme cours
doctoral, la validation étant laissée a I'appréciation des écoles doctorales concernées.

Dates : 13, 27 novembre, 4 décembre 2008, de 14:00 a 17:00.

Lieu : Ecole des Mines de Paris, 60 Bd Saint-Michel, 75006 Paris. La salle sera indiquée a
I'entrée de TENSMP en fonction du nombre définitif de participants.
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ELEMENTS OF THE MECHANICS AND PHYSICS OF RUBBER
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NOTES ON CONTINUUM KINEMATICS

Distributed: Thursday, November 27, 2008

Material (reference) and deformed (spatial) coordinates:

e position of material point P in reference configuration: p(P)

e position of material point P in deformed configuration: x(P;t) = x(p(P);1); a (gener-
ally time-dependent) mapping from reference to deformed configurations. For conve-
nience in notation, we will often suppress writing the functional dependence on “time”
t.

e the deformation map can be expressed in terms of the displacement vector u(p) of the
‘material particle’ (or local collection of mass) located, at time ¢ = ¢y, at position p in
the reference configuration according to

x(p;t) =p +u(p;?).

e the map is invertible: at any time ¢ there exists a reverse mapping p = p(x) from the
instantaneously deformed to the reference configuration

e the maps are assumed to be sufficiently smooth so that (infinitesimally) neighboring
points in the reference configuration (there separated by relative position vector dp)
map into neighboring positions in the deformed configuration, where they are separated
by relative position vector dx.



Deformation gradient tensor

the (infinitesimal) vectors dp and dx are connected by the tensor F, termed the
deformation gradient tensor, according to

dx = Fdp + o(dp)

or, in terms of Cartesian coordinates, and adopting Einstein summation convention on

repeated indices, dz; = Fj; dp;.

the deformation gradient tensor is defined according to

ox

F=Gradx=— =

op

—+ —=1+Gradu=1+H,

where 1 is the identity tensor and H is the displacement gradient tensor.

with respect to Cartesian basis vectors e;, where the vectors are determined by compo-
nents according to p = p;je;, u = u,e;, and X = z;e;, the components of F = F};e; ® e,

are
Fij =e€;- (Fej) =

where H;; = u;; = €; - (Gradue;)

== 0ij + wij = 0ij + Hiyj,

dp;

because the deformation gradient tensor maps an infinitesimal line element from the
reference configuration to another in the deformed configuration, it is sometimes re-
ferred to as a “two-point” tensor, meaning that the two vectors which it connects via
a linear transformation ‘live’ in different domains.

in general, F(p,t) varies from point to point within the reference configuration, as
well as with time ¢; when F does not vary with position, the deformation is termed

homogeneous.



Local change of shape and orientation from F':

e reference length of infinitesimal line element dp = dsgng (dp; = dsgno;); ng is unit
vector (ng - ng = |ng|? = 1):

|dp| = (dp - dp)"/* = ((dse)?ng - mg) " = dsg

e deformed length of infinitesimal line element dx = dsn (n is unit vector):

2

dx| = (dx - dx)"? = (dsn - dsn)"/? = dszn-nl/ =ds
|

e alternative expression for ds in terms of F:
ds = |dx| = ((Fdp) - (Fdp))"/* = (dp - ((F'F)dp))"*.
Subscript notation can also help here:

ds = (dz;dx;)"/? = (Fi;dp; Fidpr)'? = (dp; Fi;Fu dpy)'* = (dp; Fi Fy dpy)?

e The symmetric tensor C = F'F (Note: CT = (FTF)T = FI(F)T = FTF = C) is
termed the right Cauchy-Green tensor, and quantifies the local stretch ratio, A, of a
reference line element initially parallel to ny according to

ds dp - (Cdp))/? dsong - (C dsgng))Y/?
)\(no)zd_soz ( p (dsop)> :( 0110 (dSO 0 0)) :<n0_(cn0))1/2>0

e because the stretch A > 0 for any reference direction ng, the tensor C is positive-
definite, and det C = det(FTF) = J2. Here, use is made of the definition J = det F
and the identities det(AB) = (det A) (det B) and det A = det AT

e Cartesian components of the right Cauchy-Green tensor are C;; = Fji Fy;

e The positive-definite symmetric tensor C can be written as the product of another
symmetric, positive-definite tensor, U, termed the right stretch tensor, with itself:

C =UU = U~



Transformation of oriented material area elements

e An oriented (vector-valued) infinitesimal material area in the reference configuration
can be formed from 2 non-colinear vectors dp = dsgng and dp = dso mg according to

dag = dagrg = dp x ip,
where
dag = |dp x 0p| = |dp| [0p] sin(ng, mg) = dsg dsg sin(ng, my)
and the reference unit normal to the area is
ng X my

rp=———-.
0 |1’10 X m0|

e Under the deformation, the line elements dp and dp are mapped into corresponding
vectors dx = Fdp = dsn and dx = Fép = ds m, which generate the deformed material
area vector

da =dar = dx x Ix,
with
da = |dx x 6x| = |dx]| |0x]| sin(n,m) = dsds sin(n, m),
and deformed unit normal direction
_ nxm
"~ nxml|

e The relation between reference and deformed elemental areas, termed Nanson’s relation,
is

da = (det F)F~"day,

or
dar = (det F) F~Tdag .

This can be derived, using Cartesian subscript notation, in the following way:
T da = €ijk d.fj (Sl'k = €ijk (F]mdpm) (kadpp)

This can be multiplied from the left, on both sides of the equation, by FT (Cartesian
components: Fy, = F}) to give

FqTirZ- da = €k FigFjmErpdpmop,.
The determinant of the matrix [F};] satisfies the matrix identity
det[Flegmp = €ijk FigEjm Frp,
so that

FqTiri da = €;ji FigFjim Frpdpmdp, = det[F| €4mp dpmdp, = det[F] dag roq,
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or, in coordinate-free notation,
F'da = (det F) day.
On multiplying through by the inverse of F7 (F~7 = (F?)~!), one finally obtains

da = (det F)F~Tda,.
Changes in angle between infinitesimal line elements

e consider again the 2 reference line elements dp = dsgng and dp = dspmg. In the
reference configuration, the dot product of these two vectors is

dp - dp = dsg dsg cos(O),

where © is the angle between the unit vectors ny and mg: cos(0) = cos(ng, my) =
ng - my.

e In the deformed configuration, the respective images of these vectors are
dx = Fdp = dsn;
0x = Fop = dsm.
e The dot product of these two vectors in the deformed configuration provides
dx - 0x = dsds cos(h),
where 6 is the angle between the unit vectors n and m: cos(f) = cos(n,m) =n - m.

e Using the reference-configuration-based definitions of the deformed line elements, the
dot product can also be expressed as

dx-ox = dsds cos(d)
= (Fdp) - (Fop)
= dp- (F'F)ép
= dSo 580 g - (Cmo)

e Combining the last three equations,

ng - (Cmo)

cos(f) = —)\(n()) NCE

where the stretch ratios are A\(ng) = ds/dsy and A(mgy) = ds/dsqy are given by, e.g.,
A(ng) = (ng - (Cny))"?, etc.



e Noting that C = 1 + 2E (look ahead to p. 9 of these notes), we see that

cos(©) + 2ng - (Emy)
A(ng) A(my) ’

cos(f) =

when the two line elements are orthogonal in the reference configuration (ng - my =

0 = © = 7/2), and on expressing the shear (y) by § = © — v = 7/2 — 7, then

cos(f) = sin(y) and

. 21’10 . (Emo)

sin(v) = —————.
)= Nng) Almo)

Transformation of material volume elements

e the determinant of the deformation gradient relates a material volume element of size
dvg in the reference configuration to size dv in the deformed configuration according
to

dv = (det F) dvg = J dvy.

e in the limit of small displacement gradients, when ||H|| = O(e), the linearized kine-
matics provides

dv = (det F) dUo = det[(SU + ui,j] dUo = (1 + Uy 5 + O(E)) dUo.
so that the small strain dilatation (or fractional volume change) e is given by

dv — dvg
d’Uo

o
Il

= Ui,

or e =V -u = Divu.

e A proof of the volume transformation can be performed by identifying the elemental
reference volume, dvg, determined by a reference oriented surface area element, day =
dagrg = dp X dp, and a third, linearly independent reference line element Ap = Asyqo,
according to

dvy = Ap - dag

and then evaluating the volume of the mapped volume element as
dv = Ax - da,

where Ax = F Ap.



Eigenvalue problems

e Tensors have special directions, termed eigenvectors (principal, or ‘characteristic’ vec-
tors), such that the operation of the tensor on the eigenvector gives a multiple of the
eigenvector itself. Restricting attention to unit vectors, the magnitude (and units) of
the multiplying factor are termed eigenvalues (or principal values) of the tensor. For
the stretch tensor C, the eigenvalue problem can be posed as finding a unit direction
n and corresponding eigenvalue S such that

Cn=5Sn=S51In; or (C—S1)n=0,

for n # 0. In terms of Cartesian components, this is equivalent to the matrix eigenvalue

problem
Cn—S Cio Cis ny 0
Ca Cop — S 023 ny = 0
Cs Cso Cs3 — S ns 0

e the matrix eigenvalue problem has non-trivial solutions only when the determinant of
the matrix vanishes. This leads to a cubic equation in the (sought-for) eigenvalue itself:

0=det(C—S1)= -S>+ S* — LS+ I3 =—(S — S1)(S — S5)(S — Ss),
where [;(C); i = 1, 2, 3, are the scalar invariants of C, defined by
L(C) = 1C=C; =851+ 5%+ 53
B(C) = 5 [(rCP —x(CY)] = 3 (CiCyy — CCy) = SiS2 + 5:5 + S35,
det C = €;1,C1,C4,;Cs, = 515253

N

~~
Q

S~—
|

The parameters S;, © = 1, 2, 3 in the factorization of the characteristic polynomial are
the sought-for roots, or eigenvalues.

e Every real-valued (as opposed to complex-valued = real + i imaginary) tensor has at
least one real eigenvalue (the characteristic cubic polynomial must cross the zero axis
somewhere in —oo < S < oo!); symmetric real tensors have 3 real eigenvalues, Sy, Sa,
and S3, with corresponding unit eigenvectors n;, ¢ = 1, 2, 3. The set of eigenvalues is
the spectrum of the tensor.

e When the 3 eigenvalues are distinct, the 3 eigenvectors are orthogonal: n; -n; = ¢;;. If
two eigenvalues coincide, but differ from the remaining one (e.g., if Sy = S3 = “S” #
S1, then the eigenvectors n(S) corresponding to [both] Sy and S3 are not uniquely
defined, but they must both be in a plane perpendicular to the (unique!) eigenvector
n; corresponding to the (unique) eigenvalue S;: n(S)-n; = 0. For convenience, we
chose ny as any unit vector in this plane, then make ns orthogonal to both the others
via n3 = nj X ns.



e When all three eigenvalues are the same (say, S; = Sy = S3 = 5), then the tensor is
that multiple of the identity tensor, C = S'1, and every direction n is an eigenvector
of the tensor, with corresponding eigenvalue S.

e Every tensor C solves its own characteristic polynomial equation:
0= —CS + 1102 - IQC + Ig]_ = —(C — 511)(0 — SQ].)(C - 531);
this is the Cayley-Hamilton theorem.

Spectral representation of C and U; polar decomposition
e Based on the eigenvalues and eigenvectors of the symmetric tensor C, it can be ex-
pressed as (using “circle-cross” notation for dyadics)
C = ()\1)2 n; (024 n; + (/\2)2 ny & ny + ()\3)2 ns [ ns,
or, on using Gibbs’ notation, with no ‘®’ between dyad vector pairs, as
C = (A1)’ miny + (A2)’ noms + (A3)° nang;
the stretch tensor U admits the related representations
U=An®n; + Ayny @ny + Az3n3 @ ns
e The deformation gradient can be factored into the product of an orthogonal tensor,

R, termed the rotation tensor, and the symmetric positive-definite stretch tensor U
according to

F = RU.

This factorization is termed the polar decomposition of the tensor F.
Recall that a (proper) orthogonal tensor R has its transpose as its inverse, so that
RRT =R'R=1,and detR =1 .

Note: C = FIF = (RU)T(RU) = UT(RTR)U = UTU = UU = U? is independent
of the rigid-body rotation associated with R.

the polar decomposition of F can also be expressed as
F = VR,

where R is the same orthogonal tensor as before, and the symmetric, positive-definite
tensor V is termed the left stretch tensor.

e the left Cauchy-Green strain tensor is B = FFT = V2,

e The left and right stretch tensors are connected via the transformations
V = RURT;
U=R"VR;

Show that B = RCRT”.



[Referential, or ‘Material’] Strain tensors

The Green-Lagrange strain tensor E is defined by

E=_-(C-1).

The spectral representation of the Green-Lagrange strain tensor is
1 2 1 2 1 2
E = 5(()\1) _1) n1®1’11+§(()\2) — ].) n2®n2+§((/\3) — ]_) 1’13®1’13;

When there is no deformation (every direction has stretch of unity), but only rigid-
body rotation, then U = 1 and F = R,; under these conditions, C = 1, and the
Green-Lagrange strain tensor vanishes: E = 0.

Cartesian components of the Green-Lagrange strain tensor are

1 1 1
By = 5(Cy—0y)= §(F}£ij —di) = 5 (0 + Hi)" (64 + Hiz) — i)
1 1
= 5 (Hij+ Hji + HyHyg) = 5 (g + i + we i)

Our customary definition of (small) extensional “strain” is that of (small) change in
length divided by initial length; in mathematical terms, the extensional strain measure
(1))

e’ associated with a given direction can be considered as a function of the stretch A,
in that direction,

e=f(}),

providing the function f satisfies the following two restrictions for small stretches, or
for |A — 1] < 1

1. f(A)—0 as|A—1] — 0

2. f'fA)=df(\)/dA—0 as|A—1]—1

In the Green-Lagrange measure of stretch, the chosen function is

1 1
fA) = 3 (N =1) = §(>\+ (A= 1);
clearly, as A — 1, both requirements are fulfilled. Other functions satisfying the
requirements of a proper strain definition include f = A — 1 (nominal strain)and

f =In(\) (logarithmic, or ‘true’ strain).

Corresponding tensor measures of strain can be generated from applying the respec-
tive functions to the stretch tensor U; e.g., E = f(U) = (1/2)(U% — 1). Spectral
representations for the other strain-measure tensors, E¢, follow:

E;=f(U) = f(M)n; ®@n; + f(A2) ny ® ny + f(A3) n3 @ ng;



e In the limit of small displacement gradients, where ||H|| = O(e) < 1, the Green-
Lagrange strain tensor E (and, indeed, all the strain measures E¢) approach a common
limit, termed the small strain tensor, €, where

(Gradu + (Gradu)”) ;

N

€ =
Cartesian components of the small strain tensor are

€j = i (€ ej) = o (uij + ).
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Motions, velocities, spatial descriptions, and rate kinematics

e when the displacement is time-dependent, the material time derivative of position of
the particle originally at p, and instantaneously at x, is
_ ox(p,t) _ Ou(p,t)

e the corresponding material time derivative of the deformation gradient is

F:H:a—u:Gradl'J_.
op

e the spatial description of any field f expresses how the entity f instantaneously depends
on the current deformed position in the body, x, and time, ¢:

~

fs = f(X,t).

If we wish to construct a map of the instantaneous material time derivative of f, or
f, we must be sure that we are referring to the time-varying f-history of a particular
particle. This is most readily accomplished by “pulling back” the spatial description
of x, and hence of f, to the time-invariant reference frame, using the known material
map of the motion, x = x(p, ¢), and its implicit inverse, namely

p = p(x,1).

In words, this means that the inverse function p “pulls back” the particle that is located
at position x at time ¢, and maps it back to its reference location p at the reference
value of the time parameter. Alternatively, the [forward] time-dependent mapping x
“pushes forward” the location of the particle originally at p to instantaneously de-
formed position x.

e Now we are in a position to describe the field corresponding to the spatial description
of particle velocity, v(x,t), in terms of the reference description of velocity:

u(p,t) = u(p(x,t),t) = v(x,t).

e This structure permits definition of the spatial description of the material time deriva-
tive of any field f, denoted as f(x,t), by

Df(x,t)
Dt

(W) I+ (%) | (W) lp=p(x,1)

(255 + gnad ) v

f(xv t) =

11



This can also be formally expressed, using cartesian coordinates, by

of  of

F=% Oz,

The spatial field corresponding to the spatial gradient of v, denoted L(x,t), is termed
the velocity gradient field:
L=gradv=D+ W,

where D = D” = (L + L”) /2 is the stretching and W = —W” = (L — LT) /2 is the
spin.

We can express the material description of a spatial field a(x,t) as

an(p,t) = a(x(p,t),1).

Material (referential) gradients of a material description of a spatial field are evaluated
using the chain rule as

Graday, (p.1) = aa,,é(st) _ (aa<x(a;; t),t)> (axéz, t)) _ (erada),, F(p,f).

The material time derivative of the deformation gradient can be expressed as
F=L,F.
This is shown by noting that

0 Grad x(p, t)

F(p,t) = 5

= Gradx(p, t) = Grad v,,,(p, t) = (grad v),, F(p,t) = L,, F.
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ECOLE DES MINES DE PARIS

ELEMENTS OF THE MECHANICS AND PHYSICS OF RUBBER
ELASTICITY

NOTES ON STRESS AND EQUILIBRIUM

Distributed: Thursday, November 27, 2008

Nominal and “true” stress tensors

e In conjunction with the deformation-induced change in oriented material surface el-
ements leading to Nanson’s relation, we followed an infinitesimal vector-valued area
element dag = dagmng, centered at p in the reference configuration, of magnitude
dag = |dag| and with reference unit normal vector ng. Under the deformation gradi-
ent F, this material area element is mapped into (deformed/re-oriented) area element
da = dan, centered at x. The two area element vectors are related by (Nanson) as:

da = (det F)F~"day.

e As the surfaces under consideration are ‘imagined”, they may be (a) on the boundary
of the body, (b) at a distinguished internal interface within the body (e.g., a material
interface; a grain boundary, etc.), or (c) a ‘generic” point internal internal to the body.
In any event, there are 2 sides (or faces) to the surface. We let the 2 sides be denoted
“4+7 and “—", respectively, with the understanding that both ny and n point from the
“~7_side to the “+”-side.

e We understand that, in the deformed (“loaded”) configuration, there will be mechan-
ical interaction across the surface element. This interaction consists of an elemen-
tal force vector, df, applied by some mass/material element on the “+7-side, to the
mass,/material point on the “—”-side: force is a mechanical transaction between ele-
ments of mass, in this case transpiring across an interface. We relate this elemental
force vector to the stress tensors and elemental areas in two ways:

df = Tda = t(n) da;

df = Pdao = to(l’lo) dao.

e Here T is the Cauchy (or “true”) stress tensor, at location x of the deformed config-
uration, and P is the first Piola-Kirchhoff (or “nominal”) stress tensor, “at” p of the
reference configuration. Strictly speaking, the reference configuration was, at its time
of definition, most likely not supporting traction (although the reference configuration
could be supporting initial stress). Instead the traction was induced by mechanical
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interactions associated with the deformation itself; deformation which, evidently, had
not yet occurred at the time/place of the reference configuration. In this sense, then,,
we can view the nominal stress tensor as (a) a mechanics “bookkeeping” device (a de-
scription often used by Professor A. S. Argon), or (b) more formally, as a “pull-back”
of the Cauchy stress tensor. Without prejudice, we will find that the introduction of
the nominal stress tensor provides certain advantages in general solid mechanics for-
mulations, which we will exploit. A further notation sometimes introduced for P is
“PPK1” “indicating the first Piola-Kirchhoff stress tensor. Note that the nominal stress
tensor is not symmetric, in general (see page 9 of current notes).

We can define a stress-dimensioned traction vector as the limit, as dimensions tend
to zero, of the ratio of the force vector to the magnitude of the area element. Using
definitions of the area elements and to the tensor operation,

df

t(x,n) = (}iino o T (x)n.

The traction vectors associated with a given direction, n, and its negative direction,
—n, are equal and opposite (Cauchy’s relation):

Tn =t(n) = —t(—n)=—-T:(—n) = Tn.

Likewise, a nominal traction vector can be defined as

af

to(p,1o) = dggo dag P(p)ny.

The nominal stress tensor P reckons the force (in the deformed configuration) per unit
oriented area in the reference configuration. We can use Nanson’s relation to connect

T, P, and F:
df = Pday = Tda = T(det FF~")day,

or, on rearranging the second and last parts of the equation,

(P — (det F)TF ") day = 0.
Since the area element dag is arbitrary, the tensor within parentheses must be the zero
tensor, identically. Alternatively,

P=(detF)TF ' = JTF 7,

or

T = (det F) 'PF’ = J ' PF’.

Note: the notation used here for nominal stress is the transpose of the definition of
nominal stress found in certain publications. Be careful, because similar convention
disagreements on notation abound in the applied mechanics literature...



e Power conjugate stress measures. In the derivation above, we connected the
measure-dependent stress tensors T and P by application of a traction rule for arbi-
trary orientations. While the results we obtained are correct, another path to connect
stress measures comes from power conjugacy. Briefly, the stress-working power in an
elemental mass having deformed volume dv, and supporting Cauchy stress T, and
undergoing the velocity gradient L = grad v = FF-!is

dP =T -Ddv

where the stretching D = 1/2 (L + LT)7 and the generic tensor scalar product op-
eration A - B = tr(AB?) = AijB}-; = A;jB;j. We can ask that this same power be
obtained as the tensor scalar product of stress measure P* (to be determined) with the
time rate of change of deformation gradient, F, according to

dP = P* - F du.

Using dv = J dvy and the fact that Cauchy stress is symmetric (T = T7), we can show
that '
AP = JT - Ldvy = JT - (FF) du,

or dP = JﬂjF}kai dvg. It is straightforward to equate the two measures of stress-
working power, re-arrange the expression for the tensor scalar product, and show that

0=dy (P*—JTF ') F,

which, on invoking dvy # 0 and arbitrary F again provides P = J TF~7.

e Example problem. The time rate of change of the Green-Lagrange strain tensor is
2E = C =d(FTF)/dt = F'F + FTF. It can be shown that C = 2F'DF :
C = FT'F+F'F
= FT'FTFTF + FTFF'F
— FT (F—TFT + FF—1> F

— F7 ((FF1>T + FFl) F

= F"(L" +L)F =2F"DF.

By requiring the stress measure S (to be determined) to satisfy the stress working
power relation

dP =S - Eduy,

for arbitrary conditions, show that

S=JFI!TF T =F'P.



Solution:

By hypothesis,
) 1 )
dP =S -Edv, = 5S -Cdvy =S - (FTDF) duy,

while also dP = T - D dv. Equating these and using dv = J dv, gives

JT-D=S-(F'DF),
which can be re-arranged into

(JT—-FSF")-D =0,
giving

T = J 'FSF’;
S=JF'TF"=F"' (JTF")=F'P.

The stress tensor S which is power-conjugate to the time rate of change of the Green-
Lagrange strain is termed the second Piola-Kirchhoff stress tensor.

The stress tensor S = ST is symmetric, by inspection, but the symmetry of E itself
in the work-conjugacy condition guarantees that the skew part of S, should it exist,
would in any event have no stress working through E.



Balance of linear momentum

e The total external force transmitted to a deformed body of material, currently occupy-
ing region R; at time ¢, through its (deformed) surface area OR;, by means of external
(outward-pointing) traction vectors is

f(surfaceftraction) = / df = / tda = / Tnda.
Ry Ry Ry

e Neglecting body forces (distributed forces per unit mass; e.g., gravity; magnetic at-
traction, etc.) and acceleration (no change of linear momentum), the total external
force applied to any body, in this case, that force resultant transmitted to the body
via surface tractions, must vanish: fiiotal) = fsurface—traction) = 0.

e For sufficiently smooth scalar, vector, or tensor functions “(...)”, the Cartesian sub-
script form of the divergence theorem of vector calculus can be written as

/aRt(...)nida:/Rt%dv.

This means that the arbitrary (but smooth) field (...) may have any set of Cartesian
indices, providing that the expression makes sense when multiplied by n;, or differen-
tiated with respect to x;.

Note: If the field “(...)” is not sufficiently smooth for the indicated differentiation
operator to make sense on some internal surface (e.g., the field (...)” exhibits a jump
discontinuity of magnitude “[...]” = (...)*) —(...)(%) across surface ¥, having normal
nl(-ﬂ = —nz(*) directed from its (+4)-side towards its (—)-side, then a modified version
of the divergence theorem is constructed by adding both sides of ¥ to the general-
ized boundary, and restricting the volume integral to those portions of R; where the
differentiation can be performed, resulting in

[ coman= [ %) o= [ 11

e The ith Cartesian component of the surface traction is ¢; = Tj;n;. Thus the equilibrium
condition is

oT;;
R 07

f(total)i = Oz = / T%jnj da = dv = / (le r_[‘)Z dv.
OR; Ry

Here the vector-valued function “divT” is implicitly defined by its indicated Cartesian
components as sums of certain partial derivatives of the tensor components themselves:

aTll 8T12 8TlS
( 8x1 + 3x2 + 0x3 > ©1
aT21 aTQZ aT23
+ < 8x1 + 6:752 + 8%3 ) 2
aTSl 8T32 aTS?;
+ ( 6331 + 8332 + 8.173 ) e

divT =




e We use the fact that, for no body force or accelerations, the zero value for external
force applies for all deformed regions R; having instantaneous surface areas dR;. If
we could find a place where div T # 0, we could chose the region R, to include only
regions where the (assumed non-zero) value of the vector function had components of
one sign. Then, as the limit of R, — 0 was taken at that point, it is clear that it
would at some point not be possible for the volume integral of the divergence to give
zero total. Thus we conclude that the vector div'T must therefore vanish identically
everywhere: divT = 0.

e Had a body force vector per unit mass of magnitude b been present, the total body
force would be

f(body—force) = / bdm = b pdu,

Ry

where p = dm/dv is the mass per unit deformed volume.

e The linear momentum of the material within R; is given by

l(t)z/ pvdo,
Ry

where it is understood that v = x is the particle velocity, measured in an inertial
frame, based on the material time derivative of that particle’s position.

e Had the material points (with velocity v) been accelerating, the total change in linear
momentum for the body would be

DIt) D . .
D Di /,, pv dv /RO v po dug /Rtpv v

Here we have pulled back the integral over the time-dependent deformed region, R,
to an equivalent integral over the time-independent reference region, Ry, with a time-
independent reference mass density field po(p). The “dot” notation is short hand for
material time derivative, and the operation of integration of a tensor-valued function
(such as v or V) with respect to mass can be straightforwardly pulled-back/pushed-
forward to equivalent integrals, as shown.

e The most general case of balance of linear momentum (Newton’s law!) results in

DI(t
f(total) = f(surface—traction) + f(body—force) = T(Q =
0= / (divT + pb — pv) dv

Ry

for any deformed volume (region) R;, so the integrand must vanish identically:

divT + pb = pv.



e We can also frame the force balance relation in terms of the nominal stress tensor
P, the nominal traction vector to = Png, and a material divergence operator “Div”
according to

f(surface—traction) = / df = / to d&o = / PII[) dao = / (DIV P) d'Uo,
ORo dRo ORo Ro

where

. aPll 8P12 6P13>
DivP = + + e

v ( op1 Op2 ops3 !
+ + + e
( dpr  Opy  Ops )
+ + 22y e

( dpr  Opy  Ops )

e Note that the spatial divergence operator, div, involved spatial differentiation with
respect to the deformed coordinates x;, while the reference divergence operator, Div
involves corresponding derivatives with respect to reference Cartesian coordinates, p;.

e Again, the arbitrariness of the reference region Ry means that Div P = 0 everywhere,
in the absence of body force and acceleration. The body forces and accelerations can
be “added” to the momentum balance, referential formulation, in a straightforward
manner, resulting, when localized to an arbitrary reference volume element, in

DivP + pobo = p()V = pQX



Balance of angular momentum

e Neglecting the possibility of distributed couples (moments; torques) in the limit of
infinitesimal surface areas and volumes, the only source for a resultant moment about
the origin (an arbitrary, but convenient point for summing moments), the total moment
created by the surface tractions and body forces is

mo(t):/ thda+/ x X pbdv;
8Rt Rt

here the vector cross-product is indicated. Using the stress/traction relation and the
divergence theorem, the surface integral contribution can be transformed into

/ xxtda:/ x X (Tn)da.
8Rt 8Rt

e Using Cartesian subscripts for convenience, this becomes

(mo(t)); = / €ijk Tj (Temnm) da + / €k T; (pby) dv
ORy Ry
= / €ijk (% Thm) m + Tjpbx] dv
Ry
= / €ijk [(:Ukam,m + 5jmTkm) + x]pbk] dv
Ry

= / €k Tj (Tim,m + pbi) + €ijx Tji] do.
Ry

e The angular momentum about the origin is defined by

hy(t) :/ x X pvdv;
Ry

its time rate of change is

Dhy(t) D
Dt Dty

X pvdv = — X povd ———/ [X X pov +x X pov] d
X v X () X X Vo.
Dt Jg, T Dy Ro 0 0 0

However, since x = v, the first vector cross product vanishes, and the remaining term
can be brought back to an integral over the deformed configuration as

Dh (1) :/ x X pvdv.
Ry

Dt



e The balance of angular momentum states that mg(t) = Dhy(t)/Dt, resulting, after
re-arrangement, in

0; = / [Eijkirjk + €ijk Tj (Tkzmﬂn + pbk - pvk)] do.
Ry

At this point, we recognize the vector in parentheses as the zero-valued form of the
linear momentum balance equations, so only the term ¢;;; 75 remains as an integrand
in an integral over an arbitrary domain, which must, in any event, vanish; thus, it is
necessary that
€iji Lk = 0;.

Since we are summing on repeated indices j and k, and since the alternating tensor is,
by definition, antisymmetric with respect to permutation of any 2 indices, we conclude
that the stress tensor must necessarily be symmetric: T}, = T};, or else its possibly
non-zero skew part would give a non-zero contribution when summed with €;;,. The
upshot of all this is that T = T7, Cauchy stress tensor is symmetric, on account of
the balance of angular momentum.

e The stress tensor T is symmetric: T = TT (angular momentum balance). Although
neither F or P need be symmetric, the following condition must be satisfied:

PF’ = FP”.

This result also follows from a consistent pull-back of the angular momentum balance
equations to the (arbitrary) reference configuration, Ry.

Balance of mass

e An element of mass dm is conserved during deformation. It can be expressed as the
product of (reference) mass density per unit reference volume, py, and reference ele-
mental volume, dvg, and as the product of (deformed) mass density per unit deformed
volume, p, and the deformed elemental volume, dV:

dm = pydvg = pdv.

e Using the volume ratio dv/dvy = det F = J along with conservation of mass gives

p=pod .
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Polymer “chains”

e In cross-linked rubbers, the molecular kinetic freedom associated with ‘entropic’ elas-
ticity it primarily confined to those portions of the macromolecular network between
kinematic restraints such as chemical cross-links or mechanical entanglements. To a
first approximation, the spatial locations of such end-points define an end-to-end chain
vector r = r;+ry+...r,, where r, is the position vector connecting the atoms defining
the vth link along the chain backbone.

e The chains are taken to have ~ fixed chain vectors in both a reference configuration of
the solid (r() and in a deformed configuration (r), with respective end-to-end distances
ro = |ro| and r = |rg).

e The high degree of molecular kinematic freedom within an isolated chain generally per-
mits many possible sequences of segment-to-segment vectors r; which add vectorially
to a provide a given chain vector r = Y r;. The geometric uncertainty (or lack of com-
plete information) associated with the multiplicity of chain configurations connecting
to give a given chain vector r constitutes (in the sense of Shannon, for example), a
configurational entropy of the chain. As a chain of a fixed number of chain segments
is stretched in length from rq to r > 1y, the number of possible connecting sequences,
and hence the associated uncertainty, decreases.

e The configurational entropy of chain v is denoted g¢.(v), the change in chain configu-
rational entropy associated with the deformation-induced change in end-to-end chain
vector is

Ag.(v) = go(r(y)) - gc(ro(l/)),

and the isothermal change in continuum thermomechanical entropy per unit reference
volume, An, is represented by an appropriate sum/integral of the changes in chain
configurational entropies:

An=Ag= Z Ag.(v).

e As was shown in the thermomechanical derivations for rubbers, the principal source
of deformation-induced changes in Helmholtz free energy per unit reference volume,



1 = e — On, where e is internal energy per unit reference volume and 6 is absolute
temperature, is due to deformation-induced changes in the entropy. Thus, a central
concept of network-based models of elastomeric solids is to reckon deformation-induced
changes in the configurational entropies of the network’s chains.

Idealizations of network modeling

e Real molecular networks have high three-dimensional spatial complexity, as well as
complex temporal kinetics, so models of such networks must adopt many simplifying
idealizations. Among the difficult issues to consider are network topology, bond length
and bond-angle “energetic constraints”, and three-dimensional self-avoidance and den-
sity packing of the chains, and the enormous numbers of atomic constituents (of order
10%) comprising a macroscopic macromolecular solid.

e Note that, en principe, many of these details can be accurately addressed through
the use of modern computer-intensive molecular dynamics and/or molecular statics
modeling of deformable networks, albeit perhaps at the cost of certain insights afforded
by simpler models.

e Among the “traditional” idealizations of polymer networks, the freely-jointed chain
model offers a good compromise of physical fidelity and and tractable analytical insight.
In this model, each chain segment link length is constrained to r; = |r;| = ¢, while the
(spherical) angle between adjacent links is taken to be a random variable having a
uniform probability density.

e The probability of a chain of v links resulting in end-to-end chain vector r is denoted
p(r), and constitutes the basis for defining a chain entropy through the associated
Boltzmann relation g.(r(v)) = kglog (p(r)), where kg is Boltzmann’s constant.

ASIDE: Probability convolution integrals

e In one coordinate dimension, suppose that coordinate position y = x; + x5 is the sum
of two random variables, x; and x5, which have respective probability distributions
p1(z1) and pa(x) in the regions —oco < x; < oo, with each probability distribution
being properly normalized by

1= / pi(z;) dx; (no sum on index 7).

What is the cumulative probability distribution p(y)? Evidently, since zo = y — 1,
and, for fixed x1, dy = dxs, the probability density satisfies

py) dy = (/OO pl(ﬂfl)pz(y—w1)d:v1) dy

— o0
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so that -
ply) = / p1(1) paly — a1) day

is a convolution integral of the respective probabilities.

e In the context of infinite-domain convolution integrals, recall the utility of the Fourier
transform P(&) of the probability function p(y) defined by

P(é) = / T () dy,

with inverse Fourier transform
1 .
po) =5 [ P de

:% .

e We associate the probability transform functions P; and p;; the convolution property
of the Fourier transform provides in the present case the simple multiplicative relation

P(§) = Pi(§) P($),

which can be generalized to n steps by

o If each of the n probability functions P; is identical to the first one, say, P, then
P& =[P(9]".
Return to the freely-jointed chain

e We can form the three-dimensional Fourier transform of the chain end-to-end vector
probability function p(r) by

Plp)= [ el
R3
along with the inverse Fourier transform relation

p(r) = o) /R 3 e P(p) dp.

o Letr= 2;;1 r;, where the probability distribution of each link vector r; is identical
and can be expressed for any argument r as p;(r), with corresponding Fourier transform
Pi(p). From the convolution relation, the transformed probability function for n links
is simply P(p) = [Pi(p)]", so that

W)= G [ IR




e In the freely-jointed chain model, the probability function for a single link vector of

length ¢ can be expressed as

1

" 4nl? or = 0);

r=|r|.

Physically, this requires the next atom position on the chain to be chosen at random
from a location on a sphere of radius r = |r| = ¢ centered at the prior atom of the
chain, and the normalizing factor 47¢? corresponds to the surface area of such a sphere.

e Using spherical coordinates, it is easy to demonstrate that this probability function is

properly normalized:

dr =
/Rg pix) dr 4mf?

/OW sin(©)de /027r do /OOO 5(r— O r2dr = 1.

e The Fourier transform Pj(p) of p;(r)can likewise be constructed using a spherical co-

ordinate system according to

/ =2 (x| — ) dPr
R3

1
42

1

Pi(p) =

pl

Arl? J,

sin pf

do / §(r — O)rdr / e~rPeos(®) 5in(0)dO
0 0

where p = |p| and r - p = rpcos(O).

e From the convolution property, then,

Plo) = [Pi(p)]" = [

sin pl]"
pl |~

e Using the inverse Fourier transform, the probability function p(r) can be evaluated as

p(r)

1 A TAN
gy L ()

e Al e

2m2r

O(r = [r]).

i~
o

Thus, the probability function p(r) for the freely-jointed chain model depends only on
r = |r|, the end-to-end length of the n-link chain. This last result was attributed in the
Weiner text as being originally due to Rayleigh. Weiner gives closed-form expressions
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for the result for small integers n = 2, 3,4, ... using trigonometric identities for n-th
powers of the sine function; for large values of n, these results become problematically
tedious (but can Mathematica help here?) so other methods and approximations have
been adopted for evaluation.

Weiner offers the formal evaluation of p(r) in the limit n — oo based on the change of
variables p = yln='/?; pl = yn~/?; leading to

1 > 1/ [sin(ynH) 1"
P(r):m/o sin(yrén )[W ydy,

and noting that

sin(yn /2 2 2
ol B - 2 o)~ e

the stage is set for obtaining a Gaussian probability distribution function from the
model in the limit n — oo:

3\ —3r?
p(r) = (27?7162) P (2n€2) '

The expectation value for the square of the end-to-end chain length, denoted < 72 >,
is defined by

<r?>= / 2 p(r) d’r — 47 / r p(r) dr,
R3 0

where the last representation follows from the functional dependence p(r) = p(r).
For the Gaussian probability distribution, < r? >= nf?, so the Gaussian probability
distribution can also be written as

) 3 3/2 — 32
T) = D ——— ex D — .
p o2 < r? > p 2<r?2>

In the Gaussian limit, the configurational chain entropy of chain v, containing n,, links,
can be expressed as

ge(r(v)) = kg log(p(r(

—3r(v)?
— kg log[ o g2 exp <—2n(€2) )]

~ 3kp o 3kBT( )2
2 & 27ml,€2 2n, 02

B 3]<?B7"(1/)2
2n,, 02

= constant

Clearly, the constant is inessential to the definition of the deformation-induced changes
in chain entropy, and may be neglected.



e Thus, if the reference length of the chain is r¢(v) = |ro(v)|, while the deformed chain
length is 7(v) = |r(v)|, the change in chain entropy, in the Gaussian limit, is

Ag.(v) = %Zg (7’(1/)2 - ro(y)Q) )

Connecting continuum deformation to changes in chain configurational entropy:
the Gaussian limit

e The traditional routes to obtaining the deformation-induced changes in chain config-
urational entropy rely on an assumption of (continuum-scale) affine motion of the
junctions defining the chain ends. That is, if the continuum deformation gradient is F,
it is assumed that the microscopic-scale chain vectors in the reference and deformed
configurations are connected by

r(v) = Fro(v),
so that
r(v)? —ro(v)? = ro(v) - 2Ero(v) = 1o(v) - (C — 1)ro(1v),
where E = 1/2(C — 1) = 1/2(FTF — 1) is the Green-Lagrange strain tensor.

e The total change in configurational entropy of a unit reference volume containing N
chains is then

ME) = 3 Aa
v=1
= —% (2E) - (i%ro( ) @ 1o( ))
= —kpE-M, -
where the structure tensor
M = % éniyro(y) & ro(v)

is a property of the undeformed network.

o [f the undeformed network is macroscopically homogeneous and isotropic, we conclude
that M must be a multiple of the identity tensor:

M= M1,
where N N

1 1 1 1 1

M:§trM:£—2;n—yr0(u 26—2;”—”



e The value of M can be conceptually evaluated by considering the chains to have been
formed by “instantaneous” cross-linking at a moment when the non-cross-linked net-
work was in a statistically-representative configuration, resulting in a distribution of
m groups of chains, each containing ¢, chains of n, links, where @« = 1,...,m, and
having end-to-end distance ro(q, ), ¢ = 1,...¢c4: in this case

The values of 74(g, @)? would be drawn from a Gaussian distribution having variance
nol?, suggesting

Ca

Z r2(q, @) = canal?,

q=1
resulting in M = N. In this Gaussian limit, then, the change in configurational entropy
becomes

N
An=Ag=—kzgME-1=—kgNtE = — il

tI‘(C—l) = — (110—3).

2

An alternative connection of continuum deformation to changes in chain config-
urational entropy

e Anand suggested an alternative approach to obtain the deformation-induced change
in a Gaussian network’s configurational entropy. As a starting point, consider the

expression
Age(v) = ge(r(v)) — ge(ro(v))
—3kg 9 9
= o [r(v)? = r0(v)?]
B —3kgro(v)? [ r(v)?
n 2n, 02 |:T0<l/)2 B 1}
—Sk’BTo(V)Q

2n, 02

where the stretch of the chain is introduced as A.(v).

e We have noted above that in the Gaussian regime < ry(v)? >= nf?, which equivalently
and effectively defines the average chain link number n, and if we further assume that,



in the chain entropy change expression, a. r4(/)? can be replaced with < 74(v)? >= nf?,
and b. we can replace n, with n for each chain, then

—3kp

Ag.(v) = 5 Ae(v)? —1] =

—3kp

5 Ae(v)? + constant,

where the resulting constant is independent of deformation.

e Finally, Anand suggests that the junctions defining the chain ends can be assumed to
deform in such a manner that the local chain stretch, Ae(v), and be taken as equal to
the macroscopically-defined constant A\, where

X:\/h_c:\/trC:\//\%—i—)\%—I—)\%
— V3 3 3

becomes an “effective stretch” measure for the network. It is straightforward then
to see that a total chain entropy change can be represented, apart from a constant
independent of the deformation, by

932
Ag = NAg.(v) — N x (M) Nkp

— _2FBC.
2 5

Clearly, this final result is equivalent to that derived above, albeit based on a slightly
different set of assumptions.

Back to the continuum: Gaussian chain statistics lead to the “Neo-hookean”
constitutive model.

e The idealized continuum thermomechanics modeling of rubber elasticity was based
on a Helmholtz free energy per unit reference volume given by v = e — 0n, where e
is internal energy per unit reference volume, 6 is absolute temperature, and 7 is the
entropy per unit reference volume.

e Using the energy balance equation and the entropy inequality, we were led to the
constitutive relations
o o

OE a9 ~— "
where S, the second Piola-Kirchhoff stress tensor, is work-conjugate (per unit reference
volume) to the Green-Lagrange strain E. Note that other work-conjugate stress and
strain pairs could also be adopted (e.g.; P = 0v/0F), as well as noting the factor of 2
appearing in chain-rule derivatives with respect to C:

MW oy OE 1

oC ~ OE oC 2

S;



e In (incompressible) elastomers, to a first approximation, the internal energy is mainly
a function of temperature only: e = é(#). Defining the specific heat at constant
deformation as

_ Oe(0) 0O on _ ,0n

since the first 2 terms on the right-hand side of the equation cancel via the adopted
constitutive definition of 7.

e Re-arranging this special form of the constitutive relationship provides a differential

equation for the entropy:
On(0; E) _ c(f)

20 0

whose solution can be expressed in the separable form

n(0; E) = f(0) + g(E),

where the temperature-dependent function f satisfies the differential equation

4o o)

g 0’
and the “geometric” contribution to the entropy, g(E), depends on the deformation
from the reference configuration as measured by the strain E. By introducing a refer-

ence temperature 6y, and a reference values of e(6y) and f(6), the general forms for
the special case of constant ¢ become

e(0) = e(fy) + c(6 — 0o);
f(8) = f(6o) + clog(6/0o).
e Under these circumstances, the free energy becomes

V0, E) = e(0) — 0n(0,E)
= [e(0o) + (0 = b0)] — O[f(6o) + clog(6/6h) + g(E)],

leading to the constitutive relationship for the stress as

50,8 - 20B) __®)

e Recall that the relationship which was used to derive the relationship S = 9¢/0E was
based on identically satisfying the (isothermal) power relationship

o\
(s-2) 50



for “arbitrary” values of the strain-rate, E. However, in the case of a kinematic
constraint on deformation, such as, for example, incompressibility, we know that
h(C) = detC — 1 = 0 for all admissible deformations, so that the time rate of change
of this constraint is also workless:

Oh(C) ., 0(detC) . . .
0=—++-C=—"—1~-C=(detC)C"-C=2C""-E

oC oC ( ) ’
on using the value of the incompressibility constraint and the symmetry of C (and its
inverse). We can see, then, that any reaction stress component given by

Sp=\C!

can be added to S without changing the power balance since Si - E = 0. Thus, in the
presence of the incompressibility constraint, we define the stress measure S by
o oY
S=_—_+Sp=—+\NC
oE "R T
with the understanding that the Lagrange multiplier field “A*” scaling the reaction
stress constraint must, in general, be determined from equilibrium considerations.

e The so-called neo-Hookean constitutive model emerges by using the Gaussian network
model for entropy (see above) with g = —Nkp trE, resulting in

SO.E) =Sp— 0298 _ g 1 N0 a;rEE

o\ * -1
IE =\NC "+ Nkgb1l.

e The Cauchy, or “true” stress T is related to S by JT = FSF’, where J = detF. On
inserting the incompressible neo-Hookean expression for S(, E) into this relationship,
the final constitutive form emerges:

JT =F (\*C™' + Nkpb1) F" = X*FC'F" + Nk FF" = \* 1+ Nkpf B,

where B = V? is the left Cauchy-Green tensor. Letting the Lagrange multiplier be
re-defined as \* = —p* readily identifies its physical significance as being an arbitrary
hydrostatic pressure.

Finite chain length effects: non-Gaussian chains

e The maximum possible end-to-end length for a chain of n rigid links is ry.c = n/,
which occurs only when each link element is co-axially aligned. In this case there can
be no uncertainty about the position of the chain links, so the entropy of the chain in
this case must be at its minimum value. However, the Gaussian probability of finding a
chain having ene-to-end length r > 7.,.., although exponentially small, is nonetheless
non-zero. Clearly the use of Gaussian probability functions in entropy calculations
for sufficiently large values of the ratio r/rp.x < 1 is not accurate; in practice, the
associated errors are expected to grow rapidly for r/rya, > 0.5.

10



Alternatively, this range of chain lengths can be phrased in terms of chain stretch
(V) ~ 1(v)) < ro(v)? >%= r(v)/vnl? by introducing a locking stretch measure
A, defined by

r nt
A = 22X = +/n.
b vnb?  \/nl? v

Returning to the Rayleigh integral definition of the probability function p(r),

1 > sinpl1"
o) = 5 [ sntor) [ o

Kuhn and Grun showed that an approximate evaluation of the probability function for
“large” values of r/nf, with n large but finite, is

A* [sinhz|" xr
=5 | e ().

where A* is a normalizing constant and the Langevin function £(z) = cosh(z) —
1/x = r/(nf) implicitly defines the parameter x appearing in the expression through
the inverse Langevin function z = #(r/(nf)) = L7 (r/(nf)).

Using the Kuhn and Grun approximation and introducing r = A.(v) x (y/nf), the
argument r/(nf) = A\.(v)//n = A(v)/Ar, and the change in chain entropy becomes
(again, neglecting an inessential constant not depending on deformation)

Age(v) = kp log(p(r))

Ac(v)
—kpA\2 | =
BAL l )\L

eos ()|

The model can again be completed by assuming that \.(v) = A = 1/trC/3 for each of
the N chains per unit reference volume.

Following the same series of steps as previously in the Gaussian case, we arrive at an
expression for the Cauchy stress that is identical to that given originally by Arruda

and Boyce: B
Nkgb /n . [ A
T=Txr = —L — | B—p 1.
ABT TN Jn P

It is interesting to note that the inverse Langevin function can be very accurately
approximated over its entire domain by the simple Padé approximant

3¢
L£7HE) = .
=9
On using this substitution, the structure of the Arruda-Boyce model becomes clear:
Nkgb
T=Typ=—2"_B-—pl.

[1- /7]
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At small imposed deformations, when A < +/n, the Arruda-Boyce model merges
smoothly with the neo-Hookean (Gaussian chain statistics) model derived earlier, while

the stress-scaling factor is amplified strongly as \/\/n grows toward the limiting value
1.

The simple structure of the Arruda-Boyce model offers many practical advantages in
usage, including the fact that only 2 “material constants”, N and n, need be fit to
experimental data, the 2 constants are ‘orthogonal’ in the sense that only N governs
behavior at small deformation, so that n can be subsequently determined from behavior
at large deformations where A — A, = y/n, and the fact that the material stress
Jacobian (0T /0E, for example) is guaranteed to be positive definite (give or take a
small, but finite compressibility), facilitating relatively stable Newton-based iterative
procedures in nonlinear finite element analysis.

Another simple, robust, and easy-to-use 2-constant functional form has been proposed
by Gent to address phenomenologically the problems of non-Gaussian chain behavior
at large deformations. Gent introduces a “strain energy potential” (in essence, an
isothermal Helmholtz free energy function) Ugen according to

FE Iic—3
UGent - _E |:1 - %] s

from which Cauchy stress is derived via the now-familiar steps to arrive at

E 1
T = TGent =

— B —p"1.
3 [1 _ (110—3)} P

JTYL

In the incompressible limit, the small-strain tensile (Young’s) modulus FE is related
to the shear modulus p by E = 3u, again bringing the formulation back to the neo-
Hookean limit in which u = Nkgf. Both the Gent and Arruda-Boyce models asymp-
totically approach the neo-Hookean model at small deformations, and both incorporate
a limiting value of the network stretch, reflected in respective limiting values of [;¢,
although the differing functional forms adopted exhibit modestly different behavior as
the limiting network deformation is approached.
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*Prospects for further study
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Background overview of elastomers
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Macromolecular Notions of
Rubber Elasticity

Entropic evidence (pre-thermodynamics)
Gough 1805; Joule 1855

Cross linking (Goodyear, 1839)

Long chain molecular structure: 1900s

Molecular kinetic theory: Meyer, et al., 1930s
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Crystallization in Polyisoprene

isoprene

-CH,-C=CH-CH,-
CH,
crystallization issues:

«~orthorhombic: a/b/c

~1.25/0.89/0.81 nm (plus thermal/elastic deformation)
sprominent WAXS peaks: dy,
di20, @nd dgg,

*Scherrer equation/ peak broadening

as estimate of crystallite size
pcrystal/pamorphouSN 1.1
chain-folded; chain-extended;
mechanical properties, etc. etc.
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Chambres d’Hétes Historiques

Britannica Online:

. “The Frenchman Georges Bouchardat,

Girolles (BourgC)gne) with the aid of hydrogen chloride gas and
prolonged distillation, converted isoprene
to a rubberlike substance in 1875... "
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Mechanical Hysteresis and
Strain-Induced Crystallization/Melting in Vulcanized NR

Trabelsi, et al., Macromol. (2003)

«Simultaneous force and WAXS
measurements in cyclic loading
show hysteresis at large stretch
dominated by supercooling of

see also, Toki, et al.:
Macromol. (2002);
Polymer (2003)

crystallization with respect to melting

a) b)
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3 N.=238 15 N, =238 N
B D Ve,
? A\ \ O retonts N A
1o i 5 :
\
D oL B
7 hwrsdy 5 ° 2 3 pawfation ° °
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v
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A
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Evolution of Crystallite Size and Orientation

crystallite size

misorientation ini . .
Oqcrystalllmty loading — unloading «
e i@ ; L20o
16
y £
ijfa g
N l:
1 2 3 4 5 6 7 8 9
Strain & §
~ small differences [© @ Lizo
in crystallite size, « T 4 A
orientation, over ;. I g e
wide ranges of PLTTERe
loading, unloading - A g
Tosaka, et al., stretch . ,

Macromol. 2004
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Stress Relaxation and Crystallization

Toki, et al.,
Macromolecules, Vol. 38, No. 16, 2005

Strain

g 60 50
: /yf\"/zé%-
s 2
8
£
§ /
9 10
8
] 40
2
N Strain 40,2t 30 0
il 0 2 4 60
Time (min.)

000 0 0 s

Time (min.)
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Recent Documentation: Marchal These

NR 1.2g traction 650%, 2mmimn

25 T -
o (MPa) @C
2,0 &
Jeanne MARCHAL —e—22°C  surface hyterese 1.39186 .".'
Thése, U. Paris Xl Orsay 5 A D
(2008) y 72
' 7/
“Cristallization des caoutchoucs o F !
chargés et non chargés ol i
sous contrainte: Effet sur les 1 o T /‘oc
chaines amorphes” To229¢ A
24\ /. Vi
n o~ ..‘
3 fﬂ o
S |
4 t:' R
V-
0 : g S
1 2 3 4 5 [] 7
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With no observed crystallization

Elevated Temperatures:
No Crystallinity Means ~ No Hysteresis

for A < 6.5 at 82C,

the hysteresis (2™ cycle)
becomes ~negligible in a
cross-linked NR (1.2 g S pph)

MARCHAL (2006)

3,

@

" (o (MPa)

L
25| " ﬂmcyc}e 82°C
: 2% cycle
20
150 . hystérésis
' nulle
10

Natural rubber ; S : 1.2 ph
05F

0,0
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Unloading curve approaches
equilibrium crystallinity

4,0 M.P T T T T T T T
0, Taux de cristallinité (%
15| (MPa) 80°C sl (%) -
30l W surun cycle ) ',r’ A : mesures obtenues en statique .'A'..l'
77 [ |——" en l'absence de cristallisation B 4 | = :mesures obtenues en dynamique ' o
5 § [t teaibre g L] o
: A / 10} " A
/) s
X . B
15F o "
5F o "
10F E . ;
s - . A
L) -
05F 1 ¢ -
# A 0 o — x
0,0 - 4 5 6 7

MARCHAL (2006)
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Modest rate effects (23C)
(especially, unloading)

dM/dt=V/L,= 0.007; 0.1/s d\/dt=v/L,= 0.0023; 0.033/s

a) CN 1.2g - traction 650%, L,;=10mm b) CN 1.2g - traction 650%, L,=30mm
xnd| ® force v=1mm/s C i 25 = force v=imm/s ¢ 1
o force v=0.07mm/s B S o force v=0.07mm/s B
g
4 2 4
15 A B \ ;
A §
= g 15 ~
§ 10 g
U? LE 104 O \
5
X D
E
0 0 T T T T T
1 3 4 5 6 1 2 3 4 5 6
Lambda Lambda

MARCHAL (2006)
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Hysteresis and Induced Crystallinity

MARCHAL (2006)
S' TRABELSI W 8°C; 354U 5/55.5/686.57 " ' '
Thése, U. Paris XI I .
(2002) Tl E
e . 3 }
Caoutchouc naturel my=1.2 g SpelenglSSlpathh Ez e ]
T on loading: <
Hystérése H [ua] N ey«
1 o j
V=1 mimfimin d(dissipation) = f dy; T (%)
V, = 90 mm/min % 5 o B w5 W
on unloading: f ~ 0 20
= :naturel, soufre : 0.8g
( B L weaswetn |/
V5=600mmlmin' 3 p
T T T T T T T g
40 45 50 55 60 65 7.0 <
}‘max 05
T ()
0 5 10 15 20
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Hysteresis and Birefringence:
Plus ca change...

Bireringence. 1,1

N

L. R. G. Treloar (1975):

“It is inferred that these hysteresis loops are the result of crystallization, the

crystallites themselves being oriented in the direction of the extension and therefore

making a specific contribution to the birefringence which is additional to that due to the
amorphous network. This supposition is confirmed by experiments at higher temperatures...”
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Analogous Phenomena in Crystalline Materials

a. TRIP effect in austenitic steels

b. Shape-memory metals (e.g., NiTi)
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Strain-Induced Transformation Plasticity

In Austenitic Steels

Softening: transformation
as deformation mechanism

1000 T T T T

sz, T (uPa)

g

Equivalent Shear Str

2000

o, [MPa]

1500 [

Tensile Stress,

o1
Equivalent Plastic Strain, ¢,

0z 03

02
Equivalent Plastic Shear Strain, 7

03 o4

Stringfellow,

Hardening: transformation
product (martensite) as
strengthening mechanism

MIT PhD Thesis (1990)

Tension

Equivlent Plasti Strain ¢,

Compression

Soc|
MIT

Bquivalent Plasti Strain, ¢,

rate,
PhD Thesis (1995)

Massachusetts Institute of Technology

Superelasticity of Textured NiTi Sheet

g 8 &

sTRess e
g B

g

Pl

Phase transformation plasticity:

Austenite—martensite (loading);
Martensite—austenite (unloading)

[ |
@ 0
(b) : ] ) '
P e @
© i )
P g
- (d) (i)
D B
(e) @)

Thamburaja & Anand, Acta Mat. 2003
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Aspects of continuum modeling

-
II I " Massachusetts Institute of Technology

A Micromechanically-Based Framework
for Continuum Modeling

*Macro response dominated by entropic elasticity
of an amorphous cross-linked macromolecular network

w(A; n, N; x)=e -n0 I -

+Crystallization, x, modifies the response of | N

the amorphous network in two opposite ways: R
*softening: local entropy (or chain stretch) is increased = oo - Flory model
by crystallization; opposite for melting = A Y

*hardening: crystallites impose new constraints on
the kinetic freedoms permitted by the chains
- shortened amorphous chain lengths (n(x) |)
- captured chains increased local chain density (N(x)1)

Na=Ng - N¢

. Evolution equations: crystallization (dissipative);
melting (~ equilibrium)

. General thermodynamic loading conditions

. Tensorial generalization to other deformation modes
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Assumed Helmholtz free energy/reference volume

W = X Y(0) + (1-BX)Wiang(0:4e:No,Ng) + (BX-X)Wiang(6.Am; Ny, 1)
Effective stretch: 3(k,)% = tr(C) = A? + 2/A (tension)
Crystalline mass fraction: x (~ crystalline volume fraction)
Crystallinity-affected volume fraction of amorphous zone: (-1)x

Crystallinity-affected (reduced) effective stretch: A, =A,(Ae; X)SAq

Langevin-based Helmholtz free energy: y ,ng
(Arruda-Boyce “8-chain” model;)
N = chain density /volume
n = (A.)? : number of links/chain;
AL = “locking stretch”
Stretch-stretch: S = dy(A; x; 6) / IA

Internal variable trajectory: x = x(A;n) (should derive from oy(X; x; 8) / Ox)

-
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Initial Modeling Steps

MARCHAL (2006)

35L° (MPa) 80°C N/

mCswruncyee

absence de cristalisation
|4 réquiibre

A Recent 1-D Model (40C)

Taux de cristallinité (%)

& mesures obtenues en statique -
¥ :mesures obtenues en dynamique d""
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“Inverse Yielding” on de-stretching
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Prospects for further study
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Crystallization in Filled NRs

«Strain concentration in filled

Trabelsi, et al., Macromol., 2003

matrix accentuates strain-induced
crystallization in matrix:
crystallization at smaller stretch
enhanced nucleation at interfaces?

*Filler-reduced chain mobility limits
achievable crystallinity

*Elevated hysteresis: elevated
dissipative ‘driving forces’ for
crystallization?

-
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Crystallization in Nanoclay-NR

Carretero-Gonzalez,
et al.,Macromol., 2008

Figure 1. Representative TEM images (1 scle bar 1000 i I scale
bar 50 nm) and SAXS patems (A: fae-on view; B and C: edge-on
views) of the NR-NCI nanocomposie

@

huge induced
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Photoactuation of CNT-based
elastomeric nanocomposites

Ecole des Mines de Paris
Centre des Matériaux

December 4, 2008

PHYSICAL REVIEW B 73, 055120 (2006)
Infrared actuation in aligned polymer-nanotube composites
S. V. Ahir, A M. Squires, A. R.

University of Cambridee, J. . Thom:
ctoher 2005 revisd manuserip received X

h.and E. M. Terenev
Cambridge CB3 OHE,
publshed 24 Februay 2006)

Cavendish La
(Receivel

Light “on” Light “off”

Rubher composites contaning muliiwalled carbon nanotubes have heen iradiatd with near-nfrared light to

e o
e ideas about such a s

DOL 10.1103/PhysRevB. 73085420 PACS numberts): 7322 Lp. $107.-b, 420G, 71.35.Ge.
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FIG. 7. (Color online) The response of a 1 wt % nanocomposite

“tWO'Way" phOtO'aCtuaﬁon Of PDMST 1o IR radiation at different levels of presirain e. Stress is

Pre_strained PDMS_MWNT measured at fixed sample length (different prestrain curves labeled
. on the plot).

nanocomposites
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FIG. 8. The speed of actuation response, illustrated by plotting Time (s)

the actuation stress in PDMS3 nanocomposite, Ao in kPa, as a
function of time for different prestrain values (labeled on the plot) FIG. 9. (Color online) The normalized stress response plotted
alongside the normalized change in temperature, as functions of
time (PDMS3, prestrain e=20%); see text for discussion.

Young modulus (MPa)

=1

FIG. 6. The scheme of an affine incompressible extension, [ 7

changing the orientation of an inflexible rod embedded in the

medium. FIG. 4. (Color online] Young modulus ¥ for PDMS nanocom-
posites at increasing MWCNT loading. The atrow points at te
value for control PDMS rubher
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FIG. 10. (Color online) The magniude (in kPa) of exerted ac-
tuation stress (the height of steps in Fig. 7, Aay,), as a function of
prestrain. Different PDMS composites are labeled on the plot by FIG. 11. (Color online) The magnitude of the actuation stroke at
their wt % value. The right y axis shows the corresponding actua- £=40% as a function of filler concentration n. The maximum of the
tion stroke: the change in natural length Ly(IR). response at ~2 wt % is evident. The single square symbol gives the

value for 3 wi % carbon black filler in PDMS.
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Q;

FIG. 13. The scheme illustrating how the distortion (Kinking) of

an individual tube, lying at an angle 6 to the macroscopic alignment

axis, projects on the z axis to contribute to the average uniaxial
strain, Eq. (10).

Inferred “shortening” of CNTs
under “light on” conditions:

strain-induced orientation of CNTs:
more response at higher pre-strain

Buckling?

cause or effect?

www.sciencemag.org SCIENCE VOL 296 26 APRIL 2002

Nanotubes in a Flash—lIgnition
and Reconstruction

P. M. Ajayan,'* M. Terrones,>** A. de la Guardia," V. Huc,*
N. Grobert,® B. Q. Wei," H. Lezec,* G. Ramanath,™
T. W. Ebbesen**

Extreme photo-actuation:
ignition

(see also video clip at Science web site)

CNTs are highly responsive to near IR
photons: thermal response (HOT!);
electrical response
CNTs are excellent thermal conductors
(axially)

705

flash

Fig. 1. (A and B) Sequence of bumning of SWNT: (A) original
sample (about 2 cm outer diameter) showing the flash on top; (B)
sample soon after flashing exhibiting the ignited SWNT material
with burning red and yellow spots. (C) High-resolution transmis-
sion electron microscopy (HRTEM) image of pristine SWNT, in
which a cross section of an individual bundle is clearly observed.
(D) Typical HRTEM image of remaining carbonaceous material
obtained after flashing SWNTSs in air; the presence of reconstruct-
ed single-walled structures such as nanohorns is noteworthy. See
the supplementary material for a movie of the flash and the
burning SWNT (77).
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“Thermoelastic inversion” (?)
from Treloar (1975)
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FIG. 10 (Color online) The magnitude (in kPa) of exeried ac-
tuation stress (the height of steps in Fig. 7, Acyy,). as a function of
prestrain. Different PDMS composites are labeled on the plot by
their wi % value. The right y axis shows the corresponding actua-
tion stroke: the change in natural length Lo(IR).
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PHYSICAL REVIEW B 76, 165437 (2007)

Thermal fluctuations, stress rel ion, and ion in carbon be networks
FIG. 1. Networks of carbon nanullubcs. (a) SlF?M llmagcl of S. V. Abir and E. M. Terentjev
MWNT mat. (b) SWNT mat, under similar magnification, high- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 OHE, United Kingdom

lighting the tube bundles. (c) Scheme of the experiment, which
S. X. Lu and B. Panchapakesan

controls the temperature (T}, 7,) and strain via a micrometer (M) Deparmment of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, USA
and measures the exerted force via a dynamometer (D), in ambient (Received 15 June 2007; revised manuscript received 24 August 2007; published 30 October 2007)
relaxation or on irradiation.

MWNT mat SWNT mat

08— T T b os : T T T
CNT mats: no polymer gl e o o
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SWNTs: evidence of Fos T in
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Fig. 13. (a) Photomechanical zctuation of MWCNT mat recorded at fised sample length, The inset shows the inidial contractive stress response of the film during the first few
Th e C N TS th emse |VeS seconds when the light source is switched on; (b) photomechanical response of SWNT mat, in the same conditions, shows th sample contracting on illumination, The detailed
onset kinetics, hghlighted in the inset, matches well the compressed-esponential inetis [63],

don’t respond as the composite

PHYSICAL REVIEW LETTERS

PRL 96, 133902 (2006)

Fast Relaxation of Carhon Nanotubes in Polymer Composite Actuators

5.V, Ahir and E. M. Terentev
Cavendish Laboratory, Universiy of Cantbridse, J ] Thomson Avenie, Canbridse CB3 OHE, United Kingdom
(Received 9 January 2006: published 6 April 2006)

izl pezIRLION

Silicone clastomer composites containing mulliwalled carbon nanotubes have been imudiaied with
near-infrared light 10 study their mechanical actution response. We shorw that the speed of the stimulzted
respanse s faser than Debye relaxation, insead following 2 compressed-exponential v However, the
relaxation after switching off the light source follows the simple-exponential relaxation, as does the
stimulated response at very low nanotube coneentration. We discuss possible models and explanations to
account for the fast phatomechanical response,

Nomalized stress AG/pqy

DOL 10103PhysRerLetl 96 133902 PACS nunbers: 22701, 7138k, 8235\
FIG. 2. Normalized stress, Aa /oy Vs time, which allows
comparison of the response kinetics: (a) The light-on response of
3 wt % composite at different values of prestrain &. The right y
axis shows the simultaneously measured, similarly normalized,

Light “on" transients change in temperature on irradiation. (b) The light-on response

of different composites, all measured at the same 20% prestrain.
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FIG. 1. (a) Typical lightinduced stress at different presirains 2., ] exponentia
(s labeled on plot), corresponding to the increasing tube align- _ ransien
ment. The data for a PDMS sample with 3 wt % nanotubes. Time (s) t ansie ts
(b) The dependence of saturation stress Adygy on the degree of i . )
tbe alignment, represented here by the applied prestrain €. Data FIG. 3. Tllustration of the data fit. for 3 wt % composite at 20%
for a PDMS sample containing 3 wt% carbon black is also prestrain. Experimental data (C) is fitted by the compressed-
presented for comparison. exponential (solid line) and the simple-exponential (dashed line)

functions to demonstrate the discrepancy.




Light “off”: CNTs Light “on”: CB; 0.02wt% CNT
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Simple exponential transients:

FIG. 4. (a) The normalized stress relaxation of a 3 wt% nano-

composite illuminated at different prestrain, when the light . «l 3.
source is switched off. The right y axis shows the simultaneously All specimens, Ilght off ’
measured, similarly normalized, change in temperature on irra-

diation. (b) The light-on response of the composite with very low o, Ll ”

tube loading. and also that of a sample with 3 wt % carbon black. 3wt% CB: llg ht on

both at & = 20%. The Debye relaxation is found in both cases, 0.02Wt°/0 CNT “||gh‘t on"

with the fit curve shown by the solid line in both plots.
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multilayered structure. Stress changes through th sample were 2 -0.010 3%
recorded for five continuous illumination cycles at different white B

Figure 2, Optial images o (2)pure PDMS silicone elastomer and
(b samples from SWCNTPDMS/SWCNT multlayered stucture.
(c) SEM image showing the entanglement of SWCNTS, The spacing
between gid ines i | mm,
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Figure 4. Photomechanical response of an SWCNT/PDMS/SWCNT
mulilayered structure. (a) Stress changes through the sample at
different prestrain values: 3%, 5%, 7.50%, 9%, 15%, 200, 250 and
30% when 61 mW cm~2 white light was shone on the sample; (b) the
changes of stress as a function of illumination intensity at different

2x350nm NT mats onto 60um PDMS film s vl
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Figure. for (1) SWCNTPDMSISWCNT

multiayered stnucture; (b) MWCNTPDMSMWCNT mulifagered siuctre: (¢) SWCNT-PDMS nanosomposies: (0) MWCNT-PDMS
nanocomposies. The dashed lines ndicae the zero strss position i each gure. Thereis a ansition point for each sample, where no
apa ~OT%: (B) ~10%: () ~8.3%: (d) ~8.5%.
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Figure 8. Comparison of photomechanical respanses of multilayered
and composite samples for both SWCNTs and MWCNTSs. The
photomechanical stresses versus prestrains under 61 mW cm~
illumination are plotted for all the four samples

(A: MWCNT-PDMS composite; ¥: SWCNT-PDMS composite;

B SWCNT/PDMS/SWCNT multilayered structure:

$: MWCNT/PDMS/MWCNT multilayered structure).




